多类感知器算法

本文介绍了使用多类感知器算法进行模式判别函数的实现过程。通过增广矩阵、初始权向量和校正增量C进行迭代计算,最终达到样本正确分类。主要程序代码使用Python的numpy库,并在jupyter Notebook环境中运行。
摘要由CSDN通过智能技术生成

 多类感知器算法

1.1 题目的主要研究内容

  1. 用多类感知器算法用多类感知器算法求下列模式的判别函数:

W1:X1=[-1,-1];

W2:X2=[0,0];

W3:X3=[1,1];

 

1.2 题目研究的工作基础或实验条件

  1. 软件环境

本次仿真所用的软件为Anaonda,在Anaconda navigator中启动jupyter Notebook,它是一个基于网页的交互式计算环境,本身支持多种语言的开发,用它编写python代码,实现仿真要求。

1.3 设计思想

①写出所给模式类别的增广矩阵形式,选定权向量W的初值和校正增量C;

②在第k次迭代时,一个属于W类的模式样本 X 被送入分类器,计算所有判别函数:d(k)=W(k) X ; j =1,2,3,.........,M;

③若d(k)>d(k), 对于任意的j≠i,j=1,2,3,.....,M 则权向量不变:

       W(k+1)=W(k), j =1,2,3.......M;

④若第l个权向量使得d(k)≤d(k),则相应的权向量作调整,即:

       W(k+1)=W(k)+Cx

       W(k+1)=W(k)-Cx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李逍遥敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值