李永乐线性代数:A可逆,AX=B相关推论和例题解题思路

例题1:

思路讲解:

这个 (A-2E)可逆,所以有P(A-2E) = E,

也就是(A-2E)的逆矩阵是P;

那么PA = (A-2E)的逆 * A = B P(A-2E,A)=(E,B)

所以就可以直接求出B,也就是(A-2E)的逆 * A

例题2:

思路讲解:

X-AX=B;

(E-A)X = B;

可得:X=(E-A)的逆 * B

有题意可知,(E-A)可逆矩阵 那么有P(E-A)=E,

意味着(E-A)的逆=P 那么PB=(E-A)的逆*B=X

于是,P(E-A,B)=(E,X) 所以就可以直接求出X,也就是(E-A)的逆*B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呵呵哒( ̄▽ ̄)"

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值