第四步:caffe环境配置第二篇
前面已经配置好了,ubuntu下的GPU版本的caffe的环境,就差opencv2.4.10,上一篇已经讲了,为了保持原生态和兼容性,选择了opencv2.4.10,以前知道opencv3.x系列和cuda有冲突,没发现装opencv2.4.10也是有冲突,冲突的原因是GPU架构的变化的原因,下面就开始环境配置的opencv2.10环境的编译、安装。
(1)首先是去opencv官网(https://opencv.org/releases.html)去下载自己需要的版本的源代码(根据自己的系统选择相应后缀)
(2)安装opencv所依赖的依赖库
执行如下命令:
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
(3)接下来进行编译安装:(依次执行如下命令)
unzip opencv-2.4.10.zip
cd opencv-2.4.10
mkdir release
cd release
执行下面一行代码,你会发现没出错(由于笔者已经添加了选项,避过了一下情况1,如果只是为了配置环境运行例程可以跳过情况1)
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_CUDA=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON -D WITH_CUBLAS=1 -D WITH_NVCUVID=on -D CUDA_GENERATION=Auto -D CUDA_GENERATION=Kepler ..
情况1:
出现错误如下:
modules/core/CMakeFiles/opencv_core.dir/build.make:63: recipe for target 'modules/core/CMakeFiles/cuda_compile.dir/__/dynamicuda/src/cuda/cuda_compile_generated_matrix_operations.cu.o' failed
make[2]: *** [modules/core/CMakeFiles/cuda_compile.dir/__/dynamicuda/src/cuda/cuda_compile_generated_matrix_operations.cu.o] Error 1
CMakeFiles/Makefile2:890: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/all' failed
make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2
解决方案及分析:
这是因为显卡(包括GTX 900以上的系列)的架构是比较新的Maxwell架构,应该在cmake 参数命令中增加 -D CUDA_GENERATION=Kepler 选项;虽然Kepler架构是Maxwell架构的上一代,但是这样配置也可以成功。
执行一下命令;
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_CUDA=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON -D WITH_CUBLAS=1 -D WITH_NVCUVID=on -D CUDA_GENERATION=Auto -D CUDA_GENERATION=Kepler ..
成功后;执行编译命令:
make -j12
情况2:
出现错误:
modules/gpu/CMakeFiles/opencv_gpu.dir/build.make:1391: recipe for target 'modules/gpu/CMakeFiles/opencv_gpu.dir/src/graphcuts.cpp.o' failed
make[2]: *** [modules/gpu/CMakeFiles/opencv_gpu.dir/src/graphcuts.cpp.o] Error 1
解决方案及分析:
这是CUDA配置出错。
解决办法1:不用CUDA在cmake时设置-DWITH_CUDA=OFF
解决办法2:GraphCut在cuda7.5中弃用,在cuda8.0中被移除。
这里笔者选择解决办法2;
修改 ~/opencv-2.4.10/modules/gpu/src/graphcuts.cpp文件:(我这里把opencv源码放在家目录下,根据自己的路径进行调整)
gedit ~/opencv-2.4.10/modules/gpu/src/graphcuts.cpp
将第四十五行位置的
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
改为
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION>=8000)
重新执行编译命令:
make -j12
执行安装命令:
sudo make install
至此opencv编译完成,可以到usr/local/lib下看到编译好的opencv库。
(3)配置opencv的环境变量
1)关于"/usr/local/lib"这个路径也是是ubuntu系统默认的其中一个库路径,直接输入:sudo gedit /etc/ld.so.conf.d/libc.conf 既可以查看到;所有添加此路径为默认库这一步都可以省略。
2)在系统环境配置opencv的dpkg文件路径,方便找到opencv的头文件和链接等情况:
打开bash.bashrc文件:
sudo gedit /etc/bash.bashrc
在打开的bash.bashrc文件的最后加入如下内容:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig export PKG_CONFIG_PATH
执行如下命令;进行生效;
source /etc/bash.bashrc
(4)测试是否安装成功直接在终端敲入命令:
pkg-config --modversion opencv
显示出版本号说明已经安装成功。
至此,所有的GPU+caffe的环境配置已经全部完成,下面所要介绍是caffe源码的编译工作。
如果有更多ubuntu+cuda+caffe+slam方面的问题或者更多后续内容以及使用技巧请参考:https://blog.csdn.net/weixin_41994751