优化算法之最速下降法迭代方向的那些事

本文探讨了最速下降法在优化过程中的迭代方向特性。通过分析二次函数的迭代轨迹,证明了每次迭代方向间为何垂直。利用一维精确线搜索选择步长,确保迭代方向与梯度负向垂直,从而加速收敛。文章鼓励深入理解每个小知识点,不遗漏任何可能导致困惑的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


小唠嗑

今天是假期第二天,白天到后海逛了一下吃了很多小吃,顺便还体验了一下老北京铜锅是啥感觉,原来就是开水加枸杞红枣锅底涮肉哈哈哈,对于湖南人的我来说简直太清淡了。不过保留了食材最鲜的味道,而且对于减脂的小伙伴来说如果不加麻酱简直不要太合适。
晚上回来还是准备把昨天没发出来的几个小碎片化知识发出来。今天来聊一下最速下降法每次迭代方向之间的关系。话不多说!
Let 's begin !

为什么最速下降法每次迭代方向都垂直?

首先我们来看一下,最速下降法的迭代轨迹图(以二次函数为例)。
在这里插入图片描述
我们可以看到,其收敛的曲线是折线,且每次的迭代方向都是互相垂直的。
现在让我们简单证明一下:
证明:我们已知最速下降法的迭代公式是: x k + 1 = x k − λ ∇ f ( x k ) x_{k+1}=x_k-\lambda\nabla f(x_k) xk+1=xkλf(xk

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值