namenode与secondarynamenode是否放到同一个节点?

1.namenode与secondarynamenode是否放到同一个节点?

答:不能。

   原因:内存!!!!!单节点内存大小有物理限制。

2.现实应用中Namenode和SecondaryNamenode能不能放在一台机器上?
  答案:因为Namenode的内存是它的瓶颈,SecondaryNamenode负责复制edits_*-*和fsimage_txid,然后整合成新的fsimage_文件,并把该新生成的fsimage_镜像文件复制给Namenode节点,Namenode节点再将fsimage_转化成fsimage_镜像文件,相当于SecondaryNamenode内存大小与Namenode内存大小相同,Namenode的瓶颈是内存,如果将SecondaryNamenode和Namenode放在同一台机器上,相当于2倍的Namenode内存大小。为了减小Namenode内存的开销,应该将SecondaryNamenode放在不同机器上。


1.启动全分布模式Hadoop集群,守护进程包括NameNode、DataNode、SecondaryNameNode、ResourceManager、NodeManager和JobHistoryServer。 在Hadoop集群主节点上搭建MapReduce开发环境Eclipse。 查看Hadoop自带的MR-App单词计数源代码WordCount.java,在Eclipse项目MapReduceExample下建立新包com.mapreduce,模仿内置的WordCount示例,自己编写一个WordCount程序,最后打包成JAR形式并在Hadoop集群上运行该MR-App,查看运行结果。 分别在自编MapReduce程序WordCount运行过程中和运行结束后查看MapReduce Web界面。 2. 有如下股票买卖文件,计算股票的资本损益,统计买卖的每个股票收益。(提示:将每个股票的名称作为key值,当操作为Buy时,value记为负的价格,当操作为Sell时,value记为正的价格,以这个key和value作为map阶段输出,reduce阶段的输入)。实验要求如下: (1)编写MapReduce代码 (2)编译并打包项目 (3)使用hadoop jar命令运行程序 (4)到控制台查看输出文件结果。 文件内容: Leetcode Buy 1000 Corona Buy 10 Leetcode Sell 9000 Handbags Buy 30000 Corona Sell 1010 Corona Buy 1000 Corona Sell 500 Corona Buy 1000 Handbags Sell 7000 Corona Sell 10000 输出结果是: Corona 9500 Handbags -23000 Leetcode 8000 3. 编程实现文件合并和去重操作 对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。 输入文件A的样例如下: 20170101 x 20170102 y 20170103 x 20170104 y 20170105 z 20170106 x 输入文件B的样例如下: 20170101 y 20170102 y 20170103 x 20170104 z 20170105 y 根据输入文件A和B合并得到的输出文件C的样例如下: 20170101 x 20170101 y 20170102 y 20170103 x 20170104 y 20170104 z 20170105 y 20170105 z 三、实验过程结论 记录每一步操作,要求贴出实验结果的截图。 给出我具体的操作示例,详细以及验证
最新发布
04-03
<think>好的,用户想要了解如何配置Hadoop集群、搭建MapReduce开发环境以及完成多个MapReduce编程任务。首先,我需要整理Hadoop全分布式部署的步骤,包括各个节点的配置和启动。根据引用中的内容,用户提到了NameNode、DataNode等组件的启动,这可能涉及到Hadoop的配置文件如core-site.xml、hdfs-site.xml和yarn-site.xml的设置。需要确保用户了解如何修改这些文件,并正确设置主节点和从节点的通信。 接下来是Eclipse开发环境的搭建。用户可能需要指导如何安装Eclipse插件,配置Hadoop库路径,以及如何创建和运行MapReduce项目。这里需要参考引用中的例子,比如WordCount程序的编写和运行,可能需要详细说明代码结构和打包部署的过程。 然后是具体的MapReduce任务实现。WordCount作为经典案例,用户可能已经有一定了解,但需要清晰的代码示例和运行命令。资本损益计算部分可能涉及处理股票交易数据,需要设计合适的Mapper和Reducer来处理买入卖出记录,计算净收益。文件合并去重则需要考虑如何通过MapReduce高效地合并文件并去除重复条目,可能需要使用MultipleInputs来读取多个输入文件。 在回答过程中,要确保所有技术细节准确,比如Hadoop版本兼容性、配置参数的正确性,以及代码示例的正确语法。同时,引用相关的参考资料,如引用[3]提到的目录创建步骤,引用[5]中的解压和软链接配置,这些都需要整合到教程中,确保用户能够一步步操作。 此外,用户可能遇到的常见问题包括节点启动失败、端口冲突、权限问题等,需要在教程中给出排查建议,比如检查日志文件或使用jps命令验证进程是否正常运行。对于开发环境搭建,可能涉及路径配置和依赖管理,需要强调关键步骤避免出错。 最后,生成的相关问题需要覆盖用户可能进一步探索的方向,比如性能调优、高可用配置、其他数据处理案例等,帮助用户扩展知识面。整个回答需要结构清晰,分步骤讲解,确保用户能够跟随操作,同时保持语言简洁明了,避免过于技术化的术语,必要时提供代码片段和配置示例。</think>### Hadoop全分布式集群配置MapReduce开发环境搭建指南 #### 一、Hadoop全分布式部署教程 1. **环境准备**(需3台及以上服务器) - 所有节点创建hadoop用户并配置SSH免密登录[^4] - 安装JDK 1.8+并配置环境变量 - 按引用[5]方式解压Hadoop安装包到`/export/server/` 2. **核心配置文件修改** ```xml <!-- core-site.xml --> <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://namenode:9000</value> </property> </configuration> <!-- hdfs-site.xml --> <property> <name>dfs.namenode.name.dir</name> <value>/root/data/dfs/name</value> <!-- 引用[3]目录结构 --> </property> <property> <name>dfs.datanode.data.dir</name> <value>/root/data/dfs/data</value> </property> <!-- yarn-site.xml --> <property> <name>yarn.resourcemanager.hostname</name> <value>resourcemanager</value> </property> ``` 3. **节点启动流程** ```bash # NameNode节点 hdfs namenode -format # 格式化(仅首次) hdfs --daemon start namenode hdfs --daemon start secondarynamenode # DataNode节点 hdfs --daemon start datanode # YARN节点 yarn --daemon start resourcemanager yarn --daemon start nodemanager # 历史服务器 mapred --daemon start historyserver ``` #### 二、Eclipse MapReduce开发环境搭建 1. 安装Eclipse IDE for Java Developers 2. 添加Hadoop插件: - 将`hadoop-eclipse-plugin-3.2.0.jar`放入eclipse/plugins目录 3. 配置Map/Reduce Locations: - 设置NameNode地址和端口(默认9000) 4. 创建Java项目并添加依赖: ```xml <!-- pom.xml依赖 --> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>3.2.0</version> </dependency> ``` #### 三、WordCount程序实现 ```java public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ public void map(Object key, Text value, Context context) { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } } ``` 运行命令如引用[2]: ```bash hadoop jar examples.jar wordcount /input /output ``` #### 四、股票资本损益计算 ```java // Mapper处理交易记录 public class StockMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> { public void map(LongWritable key, Text value, Context context) { String[] tokens = value.toString().split(","); String stockId = tokens[0]; double amount = Double.parseDouble(tokens[2]) * Integer.parseInt(tokens[3]); context.write(new Text(stockId), new DoubleWritable(tokens[1].equals("BUY") ? -amount : amount)); } } // Reducer计算净收益 public class StockReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> { public void reduce(Text key, Iterable<DoubleWritable> values, Context context) { double total = 0; for (DoubleWritable val : values) { total += val.get(); } context.write(key, new DoubleWritable(total)); } } ``` #### 五、文件合并去重 ```java // Mapper提取关键字段 public class DedupMapper extends Mapper<Object, Text, Text, NullWritable> { public void map(Object key, Text value, Context context) { context.write(value, NullWritable.get()); // 输出原始记录作为key } } // Reducer自动去重 public class DedupReducer extends Reducer<Text, NullWritable, Text, NullWritable> { public void reduce(Text key, Iterable<NullWritable> values, Context context) { context.write(key, NullWritable.get()); // 相同key只会输出一次 } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值