ClickHouse的架构与基本概念

一、ClickHouse的定义

ClickHouse是一个完全的列式分布式数据库管理系统(DBMS),允许在运行时创建表和数据库,加载数据和运行查询,而无需重新配置和重新启动服务器,支持线性扩展,简单方便,高可靠性,容错。它在大数据领域没有走 Hadoop 生态,而是采用 Local attached storage 作为存储,这样整个 IO 可能就没有 Hadoop 那一套的局限。它的系统在生产环境中可以应用到比较大的规模,因为它的线性扩展能力和可靠性保障能够原生支持 shard + replication 这种解决方案。它还提供了一些 SQL 直接接口,有比较丰富的原生 client。

二、Clickhouse整体架构

在这里插入图片描述

1,数据接入层

提供了数据导入相关的服务及功能,按照数据的量级和特性我们抽象出三种Clickhouse导入数据的方式。

方式一:数仓应用层小表导入这类数据量级相对较小,且分布在不同的数据源如hdfs、es、hbase等,这时我们提供基于DataX自研的TaskPlus数据流转+调度平台导入数据,单分区数据无并发写入,多分区数据小并发写入,且能和线上任务形成依赖关系,确保导入程序的可靠性。

方式二:离线多维明细宽表导入这类数据一般是汇总层的明细数据或者是用户基于Hadoop生产的大量级数据,我们基于Spark开发了一个导入工具包,用户可以根据配置直接拉取hdfs或者hive上的数据到clickhouse,同时还能基于配置sql对数据进行ETL处理,工具包会根据配置集群的节点数以及Clickhouse集群负载情况(merges、processes)对local表进行高并发的写入,达到快速导数的目的。

方式三:实时多维明细宽表导入实时数据接入场景比较固定,我们封装了通用的ClickhouseSink,将app、pc、m三端每日百亿级的数据通过Flink接入clickhouse,ClickhouseSink也提供了batchSize(单次导入数据量)及batchTime(单次导入时间间隔)供用户选择。

2,数据存储层

ClickHouse从OLAP场景需求出发,定制开发了一套全新的高效列式存储引擎,并且实现了数据有序存储、主键索引、稀疏索引、数据Sharding、数据Partitioning、TTL、主备复制等丰富功能。以上功能共同为ClickHouse极速的分析性能奠定了基础。

(1)列式存储

与行存将每一行的数据连续存储不同,列存将每一列的数据连续存储。示例图如下:
在这里插入图片描述
相比于行式存储,列式存储在分析场景下有着许多优良的特性。
1)如前所述,分析场景中往往需要读大量行但是少数几个列。在行存模式下,数据按行连续存储,所有列的数据都存储在一个block中,不参与计算的列在IO时也要全部读出,读取操作被严重放大。而列存模式下,只需要读取参与计算的列即可,极大的减低了IO cost,加速了查询。
2)同一列中的数据属于同一类型,压缩效果显著。列存往往有着高达十倍甚至更高的压缩比,节省了大量的存储空间,降低了存储成本。
3)更高的压缩比意味着更小的data size,从磁盘中读取相应数据耗时更短。
4)自由的压缩算法选择。不同列的数据具有不同的数据类型,适用的压缩算法也就不尽相同。可以针对不同列类型,选择最合适的压缩算法。
5)高压缩比,意味着同等大小的内存能够存放更多数据,系统cache效果更好。
官方数据显示,通过使用列存,在某些分析场景下,能够获得100倍甚至更高的加速效应。

(2)数据有序存储

ClickHouse支持在建表时,指定将数据按照某些列进行sort by。
排序后,保证了相同sort key的数据在磁盘上连续存储,且有序摆放。在进行等值、范围查询时,where条件命中的数据都紧密存储在一个或若干个连续的Block中,而不是分散的存储在任意多个Block, 大幅

<think>好的,用户想了解ClickHouse的架构设计。首先,我需要回忆一下ClickHouse的核心架构特点。记得ClickHouse是列式存储数据库,这对于OLAP场景很关键。列式存储能提高查询效率,特别是聚合查询的时候,因为它只需要读取相关列的数据,而不是整行。这一点应该在架构部分重点强调。 接下来是分片和副本机制。ClickHouse支持分布式架构,数据可以分片存储在不同的节点上,同时每个分片可以有多个副本,保证高可用性和数据冗余。需要解释分片如何实现水平扩展,副本如何通过异步或同步方式复制数据。可能需要提到集群配置和ZooKeeper的作用,因为ZooKeeper用于协调分布式操作,比如元数据管理和副本同步。 然后是核心抽象,比如列、字段、块(Block)的概念。块是处理数据的基本单元,由多个列组成,每个列是连续的内存块,这样在处理数据时可以利用向量化执行,提高性能。向量化执行引擎和LLVM优化也是其高效查询的重要原因,这里需要说明它们如何工作。 数据存储结构方面,MergeTree引擎家族是ClickHouse的核心,比如MergeTree、ReplacingMergeTree等。这些引擎支持数据分区、索引(如主键索引、跳数索引),以及数据合并过程。分区键和主键的区别需要澄清,主键用于索引,而分区键用于数据存储的分区管理。 数据处理流程包括数据插入、查询、更新和删除。由于ClickHouse主要针对批量写入,插入过程会先写入内存再落盘,而更新和删除是通过ALTER操作实现,这在列式存储中比较少见,需要解释其实现机制,比如标记删除和异步合并。 高性能的原因部分,除了列式存储和向量化执行,还有数据压缩、并行分布式查询等。需要提到这些技术如何共同作用,使得ClickHouse在处理大数据分析时表现出色。 应用场景部分,应该列举典型的OLAP用例,如日志分析、用户行为分析、实时报表等,说明架构设计如何支持这些场景。 用户提供的引用资料中,引用[2]提到了架构简介和核心抽象,引用[3]可能有数据库引擎的详细解析,需要结合这些内容确保回答准确。同时要检查是否有其他细节遗漏,比如数据查询的执行过程,可能涉及查询优化器和分布式查询计划生成。 最后,生成相关问题时要围绕架构的各个方面,比如列式存储的优势、分片副本机制、MergeTree引擎、性能优化技术等,确保问题能帮助用户深入理解。</think>### ClickHouse 架构设计详解 ClickHouse 是一款面向 **联机分析处理(OLAP)** 的列式数据库管理系统,其架构设计以高性能、高吞吐量和分布式扩展能力为核心目标。以下从核心组件、数据存储、分布式架构和运作流程四方面解析其架构。 --- #### 一、核心架构组件 1. **列式存储引擎** ClickHouse 采用列式存储,数据按列组织并压缩存储,显著减少 I/O 消耗,提升聚合查询效率。例如,计算某列的平均值只需读取该列数据,而非整行[^2]。 2. **向量化执行引擎** 通过 SIMD 指令集和向量化处理,批量处理数据列(而非逐行处理),大幅提高 CPU 利用率。例如,对 $x_i + y_i$ 的运算可一次性完成整列的加法操作[^3]。 3. **分布式分片机制** - **分片(Shard)**:数据水平切分到多个节点,支持横向扩展。 - **副本(Replica)**:每个分片可配置多个副本,通过 ZooKeeper 协调数据一致性,实现高可用[^1]。 - 查询时通过 **分布式表引擎**(如 `Distributed`)自动路由请求到对应分片。 --- #### 二、数据存储结构 1. **MergeTree 引擎家族** - **MergeTree**:核心引擎,支持按时间或自定义键分区(Partition),数据按主键有序存储,加速范围查询。 - **ReplicatedMergeTree**:在 MergeTree 基础上增加副本同步功能,依赖 ZooKeeper 管理元数据。 - **CollapsingMergeTree**:支持数据版本折叠,适用于增量更新场景。 2. **索引机制** - **主键索引**:稀疏索引,减少索引存储空间。 - **跳数索引**(如 `minmax`、`set`):基于数据块的统计信息,快速过滤无关数据块。 --- #### 三、数据处理流程 1. **数据写入** - 写入操作先写入内存缓冲区(MemTable),定期刷写到磁盘形成不可变的数据片段(Part)。 - 后台线程合并小片段为大片段(Merge),优化查询性能[^2]。 2. **数据查询** - 查询优化器生成执行计划,优先利用索引和分区裁剪。 - 分布式查询时,协调节点合并各分片结果并返回。 3. **数据更新删除** ClickHouse 通过 `ALTER TABLE ... UPDATE/DELETE` 实现异步更新/删除,实际是标记数据并后台合并清理。 --- #### 四、高性能关键设计 1. **数据压缩** 列式存储天然适合压缩(如 LZ4、ZSTD),压缩比可达 5-10 倍,减少存储和网络传输开销。 2. **并行分布式执行** 单机多核并行处理 + 跨节点分布式查询,充分利用集群资源。 3. **资源隔离** 支持配置资源组(Resource Groups),避免大查询影响关键任务。 --- #### 五、典型应用场景 1. **实时日志分析**:高速写入聚合查询能力,适合 PB 级日志处理。 2. **用户行为分析**:漏斗分析、路径分析等复杂查询。 3. **时序数据处理**:物联网设备监控、指标存储[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓之以理的喵~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值