一、ClickHouse的定义
ClickHouse是一个完全的列式分布式数据库管理系统(DBMS),允许在运行时创建表和数据库,加载数据和运行查询,而无需重新配置和重新启动服务器,支持线性扩展,简单方便,高可靠性,容错。它在大数据领域没有走 Hadoop 生态,而是采用 Local attached storage 作为存储,这样整个 IO 可能就没有 Hadoop 那一套的局限。它的系统在生产环境中可以应用到比较大的规模,因为它的线性扩展能力和可靠性保障能够原生支持 shard + replication 这种解决方案。它还提供了一些 SQL 直接接口,有比较丰富的原生 client。
二、Clickhouse整体架构
1,数据接入层
提供了数据导入相关的服务及功能,按照数据的量级和特性我们抽象出三种Clickhouse导入数据的方式。
方式一:数仓应用层小表导入这类数据量级相对较小,且分布在不同的数据源如hdfs、es、hbase等,这时我们提供基于DataX自研的TaskPlus数据流转+调度平台导入数据,单分区数据无并发写入,多分区数据小并发写入,且能和线上任务形成依赖关系,确保导入程序的可靠性。
方式二:离线多维明细宽表导入这类数据一般是汇总层的明细数据或者是用户基于Hadoop生产的大量级数据,我们基于Spark开发了一个导入工具包,用户可以根据配置直接拉取hdfs或者hive上的数据到clickhouse,同时还能基于配置sql对数据进行ETL处理,工具包会根据配置集群的节点数以及Clickhouse集群负载情况(merges、processes)对local表进行高并发的写入,达到快速导数的目的。
方式三:实时多维明细宽表导入实时数据接入场景比较固定,我们封装了通用的ClickhouseSink,将app、pc、m三端每日百亿级的数据通过Flink接入clickhouse,ClickhouseSink也提供了batchSize(单次导入数据量)及batchTime(单次导入时间间隔)供用户选择。
2,数据存储层
ClickHouse从OLAP场景需求出发,定制开发了一套全新的高效列式存储引擎,并且实现了数据有序存储、主键索引、稀疏索引、数据Sharding、数据Partitioning、TTL、主备复制等丰富功能。以上功能共同为ClickHouse极速的分析性能奠定了基础。
(1)列式存储
与行存将每一行的数据连续存储不同,列存将每一列的数据连续存储。示例图如下:
相比于行式存储,列式存储在分析场景下有着许多优良的特性。
1)如前所述,分析场景中往往需要读大量行但是少数几个列。在行存模式下,数据按行连续存储,所有列的数据都存储在一个block中,不参与计算的列在IO时也要全部读出,读取操作被严重放大。而列存模式下,只需要读取参与计算的列即可,极大的减低了IO cost,加速了查询。
2)同一列中的数据属于同一类型,压缩效果显著。列存往往有着高达十倍甚至更高的压缩比,节省了大量的存储空间,降低了存储成本。
3)更高的压缩比意味着更小的data size,从磁盘中读取相应数据耗时更短。
4)自由的压缩算法选择。不同列的数据具有不同的数据类型,适用的压缩算法也就不尽相同。可以针对不同列类型,选择最合适的压缩算法。
5)高压缩比,意味着同等大小的内存能够存放更多数据,系统cache效果更好。
官方数据显示,通过使用列存,在某些分析场景下,能够获得100倍甚至更高的加速效应。
(2)数据有序存储
ClickHouse支持在建表时,指定将数据按照某些列进行sort by。
排序后,保证了相同sort key的数据在磁盘上连续存储,且有序摆放。在进行等值、范围查询时,where条件命中的数据都紧密存储在一个或若干个连续的Block中,而不是分散的存储在任意多个Block, 大幅