【线代】《线性代数的几何意义》——摘录笔记(三)

本文摘录自《线性代数的几何意义》,重点探讨了矩阵的定义、线性变换、初等变换、矩阵秩的几何意义、特征根和特征向量的概念。矩阵作为线性变换的工具,其几何意义体现在对向量空间的伸缩和旋转等变换。通过矩阵乘法可实现线性变换的叠加,而矩阵秩揭示了变换后的空间维度。特征向量和特征值描述了矩阵对特定向量仅伸缩不变的性质。
摘要由CSDN通过智能技术生成

内容:大多是摘录原书,概括、理解是自己总结的。

目的:供自己温习使用,有摘录不全或总结不精的部分。他人学习,仅供参考。

目录

U5 矩阵

1. 定义

2. 矩阵与矩阵乘法

3. 线性变换

4. 初等变换

5. 矩阵秩的几何意义

6. 特征根、特征向量

7. 矩阵相似

8. 矩阵的等价、相似与合同—对比

9. 几类矩阵的含义

笔记链接汇总


U5 矩阵

1. 定义

矩阵的概念源于这一问题:不能用克莱姆法则的线性方程组如何解?

【矩阵】[1]数表,这是个静态概念。[2]经过分块可看作一些向量排列而成,矩阵乘法中,逐行逐列运算是符合向量点积运算的。[3]是向量与向量间的线性对应关系,是线性变换或是向量的比例函数的映射系数。

矩阵的几何意义伸缩变换(比例和方向)。把一个变量变成另一个变量,即发生在向量空间里的变换运动,又名线性变换或线性映射。就是矩阵的向量意义。

矩阵Amxn把一个n维空间的n维向量变换为一个m维空间(矩阵A所在的空间)的m维向量。一个n阶方阵表示,把一个n维空间的向量映射到自身空间另一个向量的线性变换。

2. 矩阵与矩阵乘法

(1)如果把矩阵看作一个几何图形,那么乘以就是把的图形进行了有规律的变换,这个规律的变换就是线性变换(这里实际上把矩阵看成了多个向量的组合)

(2)如果把两个矩阵看作等同的,那么的结果是把两个线性变换进行了叠加或复合。

3. 线性变换

一个矩阵变换也必然是一个线性变换。两者具有一一对应的关系(在给定基的前提下)。

常见的线性变换有初等变换、等价变换、相似变换、合同变换等。我们也常常听到正交变换的名字,但由于正交变换包括平移、旋转和镜像,平移变换不是线性变换,因此不是所有的正交变换是线性变换。(找一下关于

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值