【高数】Abel定理,幂级数的和收敛半径,不同幂级数收敛半径的比较,缺项幂级数的解法

 

目录

一、收敛区间及收敛点

二、收敛半径的变化

三、借助正项级数敛散性求幂级数收敛区间

四、缺项幂级数的解法

五、小结


一、收敛区间及收敛点

\sum_{n=1}^{\infty }a_{n}(x-x_{0})^{n},现对该形式的幂级数进行如下讨论。

1. 幂级数的收敛区间,对称中心是x0,收敛半径是R。

2. 经有限次的逐项求导或积分,不改变收敛半径R和收敛去间(x0-R, x0+R),但收敛域可能改变。

收敛区间端点处的敛散性可能会改变

3. 由Abel定理,若x1处收敛(x1≠x0),那么满足 |x-x0|<|x1-x0| 的x值,均绝对收敛。但不知 |x-x0|>|x1-x0| 时的敛散性

若x2处发散(x1≠x0),那么对满足 |x-x0|>|x2-x0| 的任何x值,均发散。


可简单理解为,已知一个收敛点,那么其他离收敛区间的中心更近的,就绝对收敛。比发散点更远的,就发散。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值