目录
一、收敛区间及收敛点
,现对该形式的幂级数进行如下讨论。
1. 幂级数的收敛区间,对称中心是x0,收敛半径是R。
2. 经有限次的逐项求导或积分,不改变收敛半径R和收敛去间(x0-R, x0+R),但收敛域可能改变。
即收敛区间端点处的敛散性可能会改变。
3. 由Abel定理,若x1处收敛(x1≠x0),那么满足 |x-x0|<|x1-x0| 的x值,均绝对收敛。但不知 |x-x0|>|x1-x0| 时的敛散性。
若x2处发散(x1≠x0),那么对满足 |x-x0|>|x2-x0| 的任何x值,均发散。
可简单理解为,已知一个收敛点,那么其他离收敛区间的中心更近的,就绝对收敛。比发散点更远的,就发散。