Diffusion扩散
关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model (DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得了较多显著的成果,现有的比较受欢迎的的例子包括由OpenAI主导的GLIDE和DALL-E 2、由海德堡大学主导的潜在扩散和由Google Brain主导的图像生成。
实际上生成模型的扩散概念已经在(Sohl-Dickstein et al., 2015)中介绍过。然而,直到(Song et al., 2019)(斯坦福大学)和(Ho et al., 2020)(在Google Brain)才各自独立地改进了这种方法。
本文是在Phil Wang基于PyTorch框架的复现的基础上(而它本身又是基于TensorFlow实现),迁移到MindSpore AI框架上实现的。
实验中我们采用离散时间(潜在变量模型)的观点,另外,读者也可以查看有关于扩散模型的其他几个观点!
模型简介
什么是Diffusion Model?
如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。 Diffusion对于图像的处理包括以下两个过程:
-
我们选择的固定(或预定义)正向扩散过程 𝑞𝑞 :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声
-
一个学习的反向去噪的扩散过程 𝑝𝜃𝑝𝜃 :通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像
由 𝑡𝑡 索引的正向和反向过程都发生在某些有限时间步长 𝑇𝑇(DDPM作者使用 𝑇=1000𝑇=1000)内。从𝑡=0𝑡=0开始,在数据分布中采样真实图像 𝐱0𝑥0(本文使用一张来自ImageNet的猫图像形象的展示了diffusion正向添加噪声的过程),正向过程在每个时间步长 𝑡𝑡 都从高斯分布中采样一些噪声,再添加到上一个时刻的图像中。假定给定一个足够大的 𝑇𝑇 和一个在每个时间步长添加噪声的良好时间表,您最终会在 𝑡=𝑇𝑡=𝑇 通过渐进的过程得到所谓的各向同性的高斯分布。
扩散模型实现原理
Diffusion 前向过程
所谓前向过程,即向图片上加噪声的过程。虽然这个步骤无法做到图片生成,但这是理解diffusion model以及构建训练样本至关重要的一步。 首先我们需要一个可控的损失函数,并运用神经网络对其进行优化。
设 𝑞(𝑥0)𝑞(𝑥0) 是真实数据分布,由于 𝑥0∼𝑞(𝑥0)𝑥0∼𝑞(𝑥0) ,所以我们可以从这个分布中采样以获得图像 𝑥0𝑥0 。接下来我们定义前向扩散过程 𝑞(𝑥𝑡|𝑥𝑡−1)𝑞(𝑥𝑡|𝑥𝑡−1) ,在前向过程中我们会根据已知的方差 0<𝛽1<𝛽2<...<𝛽𝑇<10<𝛽1<𝛽2<...<𝛽𝑇<1 在每个时间步长 t 添加高斯噪声,由于前向过程的每个时刻 t 只与时刻 t-1 有关,所以也可以看做马尔科夫过程:
回想一下,正态分布(也称为高斯分布)由两个参数定义:平均值 𝜇𝜇 和方差 𝜎2≥0𝜎2≥0 。基本上,在每个时间步长 𝑡𝑡 处的产生的每个新的(轻微噪声)图像都是从条件高斯分布中绘制的,其中
我们可以通过采样𝜖∼ (0,𝐈)然后设置
请注意, 𝛽𝑡𝛽𝑡 在每个时间步长 𝑡𝑡 (因此是下标)不是恒定的:事实上,我们定义了一个所谓的“动态方差”的方法,使得每个时间步长的 𝛽𝑡𝛽𝑡 可以是线性的、二次的、余弦的等(有点像动态学习率方法)。
因此,如果我们适当设置时间表,从 𝐱0𝑥0 开始,我们最终得到 𝐱1,...,𝐱𝑡,...,𝐱𝑇𝑥1,...,𝑥𝑡,...,𝑥𝑇,即随着 𝑡𝑡 的增大 𝐱𝑡𝑥𝑡 会越来越接近纯噪声,而 𝐱𝑇𝑥𝑇 就是纯高斯噪声。
那么,如果我们知道条件概率分布 𝑝(𝐱𝑡−1|𝐱𝑡)𝑝(𝑥𝑡−1|𝑥𝑡) ,我们就可以反向运行这个过程:通过采样一些随机高斯噪声 𝐱𝑇𝑥𝑇,然后逐渐去噪它,最终得到真实分布 𝐱0𝑥0 中的样本。但是,我们不知道条件概率分布 𝑝(𝐱𝑡−1|𝐱𝑡)𝑝(𝑥𝑡−1|𝑥𝑡) 。这很棘手,因为需要知道所有可能图像的分布,才能计算这个条件概率。
Diffusion 逆向过程
为了解决上述问题,我们将利用神经网络来近似(学习)这个条件概率分布 𝑝𝜃(𝐱𝑡−1|𝐱𝑡)𝑝𝜃(𝑥𝑡−1|𝑥𝑡) , 其中 𝜃𝜃 是神经网络的参数。如果说前向过程(forward)是加噪的过程,那么逆向过程(reverse)就是diffusion的去噪推断过程,而通过神经网络学习并表示 𝑝𝜃(𝐱𝑡−1|𝐱𝑡)𝑝𝜃(𝑥𝑡−1|𝑥𝑡) 的过程就是Diffusion 逆向去噪的核心。
现在,我们知道了需要一个神经网络来学习逆向过程的(条件)概率分布。我们假设这个反向过程也是高斯的,任何高斯分布都由2个参数定义:
-
由 𝜇𝜃𝜇𝜃 参数化的平均值
-
由 𝜇𝜃𝜇𝜃 参数化的方差
综上,我们可以将逆向过程公式化为
其中平均值和方差也取决于噪声水平 𝑡𝑡 ,神经网络需要通过学习来表示这些均值和方差。
-
注意,DDPM的作者决定保持方差固定,让神经网络只学习(表示)这个条件概率分布的平均值 𝜇𝜃𝜇𝜃 。
-
本文我们同样假设神经网络只需要学习(表示)这个条件概率分布的平均值 𝜇𝜃𝜇𝜃 。
为了导出一个目标函数来学习反向过程的平均值,作者观察到 𝑞𝑞 和 𝑝𝜃𝑝𝜃 的组合可以被视为变分自动编码器(VAE)。因此,变分下界(也称为ELBO)可用于最小化真值数据样本 𝐱0𝑥0 的似然负对数(有关ELBO的详细信息,请参阅VAE论文(Kingma等人,2013年)),该过程的ELBO是每个时间步长的损失之和 𝐿=𝐿0+𝐿1+...+𝐿𝑇𝐿=𝐿0+𝐿1+...+𝐿𝑇 ,其中,每项的损失 𝐿𝑡𝐿𝑡 (除了 𝐿0𝐿0 )实际上是2个高斯分布之间的KL发散,可以明确地写为相对于均值的L2-loss!
如Sohl-Dickstein等人所示,构建Diffusion正向过程的直接结果是我们可以在条件是 𝐱0𝑥0 (因为高斯和也是高斯)的情况下,在任意噪声水平上采样 𝐱𝑡𝑥𝑡 ,而不需要重复应用 𝑞𝑞 去采样 𝐱𝑡𝑥𝑡 ,这非常方便。使用
我们就有
这意味着我们可以采样高斯噪声并适当地缩放它,然后将其添加到 𝐱0𝑥0 中,直接获得 𝐱𝑡𝑥𝑡 。
请注意,𝛼¯𝑡𝛼¯𝑡 是已知 𝛽𝑡𝛽𝑡 方差计划的函数,因此也是已知的,可以预先计算。这允许我们在训练期间优化损失函数 𝐿𝐿 的随机项。或者换句话说,在训练期间随机采样 𝑡𝑡 并优化 𝐿𝑡𝐿𝑡 。
正如Ho等人所展示的那样,这种性质的另一个优点是可以重新参数化平均值,使神经网络学习(预测)构成损失的KL项中噪声的附加噪声。这意味着我们的神经网络变成了噪声预测器,而不是(直接)均值预测器。其中,平均值可以按如下方式计算:
最终的目标函数 𝐿𝑡𝐿𝑡 如下 (随机步长 t 由 (𝜖∼𝑁(0,𝐈))(𝜖∼𝑁(0,𝐼)) 给定):
在这里, 𝐱0𝑥0 是初始(真实,未损坏)图像, 𝜖𝜖 是在时间步长 𝑡𝑡 采样的纯噪声,𝜖𝜃(𝐱𝑡,𝑡)𝜖𝜃(𝑥𝑡,𝑡)是我们的神经网络。神经网络是基于真实噪声和预测高斯噪声之间的简单均方误差(MSE)进行优化的。
训练算法现在如下所示:
换句话说:
-
我们从真实未知和可能复杂的数据分布中随机抽取一个样本 𝑞(𝐱0)𝑞(𝑥0)
-
我们均匀地采样11和𝑇𝑇之间的噪声水平𝑡𝑡(即,随机时间步长)
-
我们从高斯分布中采样一些噪声,并使用上面定义的属性在 𝑡𝑡 时间步上破坏输入
-
神经网络被训练以基于损坏的图像 𝐱𝑡𝑥𝑡 来预测这种噪声,即基于已知的时间表 𝐱𝑡𝑥𝑡 上施加的噪声
实际上,所有这些都是在批数据上使用随机梯度下降来优化神经网络完成的。
U-Net神经网络预测噪声
神经网络需要在特定时间步长接收带噪声的图像,并返回预测的噪声。请注意,预测噪声是与输入图像具有相同大小/分辨率的张量。因此,从技术上讲,网络接受并输出相同形状的张量。那么我们可以用什么类型的神经网络来实现呢?
这里通常使用的是非常相似的自动编码器,您可能还记得典型的"深度学习入门"教程。自动编码器在编码器和解码器之间有一个所谓的"bottleneck"层。编码器首先将图像编码为一个称为"bottleneck"的较小的隐藏表示,然后解码器将该隐藏表示解码回实际图像。这迫使网络只保留bottleneck层中最重要的信息。
在模型结构方面,DDPM的作者选择了U-Net,出自(Ronneberger et al.,2015)(当时,它在医学图像分割方面取得了最先进的结果)。这个网络就像任何自动编码器一样,在中间由一个bottleneck组成,确保网络只学习最重要的信息。重要的是,它在编码器和解码器之间引入了残差连接,极大地改善了梯度流(灵感来自于(He et al., 2015))。
可以看出,U-Net模型首先对输入进行下采样(即,在空间分辨率方面使输入更小),之后执行上采样。
构建Diffusion模型
下面,我们逐步构建Diffusion模型。
首先,我们定义了一些帮助函数和类,这些函数和类将在实现神经网络时使用。
位置向量
由于神经网络的参数在时间(噪声水平)上共享,作者使用正弦位置嵌入来编码𝑡𝑡,灵感来自Transformer(Vaswani et al., 2017)。对于批处理中的每一张图像,神经网络"知道"它在哪个特定时间步长(噪声水平)上运行。
SinusoidalPositionEmbeddings
模块采用(batch_size, 1)
形状的张量作为输入(即批处理中几个有噪声图像的噪声水平),并将其转换为(batch_size, dim)
形状的张量,其中dim
是位置嵌入的尺寸。然后,我们将其添加到每个剩余块中。
ResNet/ConvNeXT块
接下来,我们定义U-Net模型的核心构建块。DDPM作者使用了一个Wide ResNet块(Zagoruyko et al., 2016),但Phil Wang决定添加ConvNeXT(Liu et al., 2022)替换ResNet,因为后者在图像领域取得了巨大成功。
在最终的U-Net架构中,可以选择其中一个或另一个,本文选择ConvNeXT块构建U-Net模型。
Attention模块
接下来,我们定义Attention模块,DDPM作者将其添加到卷积块之间。Attention是著名的Transformer架构(Vaswani et al., 2017),在人工智能的各个领域都取得了巨大的成功,从NLP到蛋白质折叠。Phil Wang使用了两种注意力变体:一种是常规的multi-head self-attention(如Transformer中使用的),另一种是LinearAttention(Shen et al., 2018),其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。 要想对Attention机制进行深入的了解,请参照Jay Allamar的精彩的博文。
组归一化
DDPM作者将U-Net的卷积/注意层与群归一化(Wu et al., 2018)。下面,我们定义一个PreNorm
类,将用于在注意层之前应用groupnorm。
条件U-Net
我们已经定义了所有的构建块(位置嵌入、ResNet/ConvNeXT块、Attention和组归一化),现在需要定义整个神经网络了。请记住,网络 𝜖𝜃(𝐱𝑡,𝑡)𝜖𝜃(𝑥𝑡,𝑡) 的工作是接收一批噪声图像+噪声水平,并输出添加到输入中的噪声。
更具体的: 网络获取了一批(batch_size, num_channels, height, width)
形状的噪声图像和一批(batch_size, 1)
形状的噪音水平作为输入,并返回(batch_size, num_channels, height, width)
形状的张量。
网络构建过程如下:
-
首先,将卷积层应用于噪声图像批上,并计算噪声水平的位置
-
接下来,应用一系列下采样级。每个下采样阶段由2个ResNet/ConvNeXT块 + groupnorm + attention + 残差连接 + 一个下采样操作组成
-
在网络的中间,再次应用ResNet或ConvNeXT块,并与attention交织
-
接下来,应用一系列上采样级。每个上采样级由2个ResNet/ConvNeXT块+ groupnorm + attention + 残差连接 + 一个上采样操作组成
-
最后,应用ResNet/ConvNeXT块,然后应用卷积层
最终,神经网络将层堆叠起来,就像它们是乐高积木一样(但重要的是了解它们是如何工作的)。
正向扩散
我们已经知道正向扩散过程在多个时间步长𝑇𝑇中,从实际分布逐渐向图像添加噪声,根据差异计划进行正向扩散。最初的DDPM作者采用了线性时间表:
-
我们将正向过程方差设置为常数,从𝛽1=10−4𝛽1=10−4线性增加到𝛽𝑇=0.02𝛽𝑇=0.02。
-
但是,它在(Nichol et al., 2021)中表明,当使用余弦调度时,可以获得更好的结果。
首先,让我们使用 𝑇=200𝑇=200 时间步长的线性计划,并定义我们需要的 β𝑡β𝑡 中的各种变量,例如方差 𝛼¯𝑡𝛼¯𝑡 的累积乘积。下面的每个变量都只是一维张量,存储从 𝑡𝑡 到 𝑇𝑇 的值。重要的是,我们还定义了extract
函数,它将允许我们提取一批适当的 𝑡𝑡 索引。
噪声被添加到mindspore张量中,而不是Pillow图像。我们将首先定义图像转换,允许我们从PIL图像转换到mindspore张量(我们可以在其上添加噪声),反之亦然。
这些转换相当简单:我们首先通过除以255255来标准化图像(使它们在 [0,1][0,1] 范围内),然后确保它们在 [−1,1][−1,1] 范围内。DPPM论文中有介绍到:
假设图像数据由 {0,1,...,255}{0,1,...,255} 中的整数组成,线性缩放为 [−1,1][−1,1] , 这确保了神经网络反向过程在从标准正常先验 𝑝(𝐱𝑇)𝑝(𝑥𝑇)开始的一致缩放输入上运行。
数据准备与处理
在这里我们定义一个正则数据集。数据集可以来自简单的真实数据集的图像组成,如Fashion-MNIST、CIFAR-10或ImageNet,其中线性缩放为 [−1,1][−1,1] 。
每个图像的大小都会调整为相同的大小。有趣的是,图像也是随机水平翻转的。根据论文内容:我们在CIFAR10的训练中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,并发现翻转可以稍微提高样本质量。
本实验我们选用Fashion_MNIST数据集,我们使用download下载并解压Fashion_MNIST数据集到指定路径。此数据集由已经具有相同分辨率的图像组成,即28x28。
接下来,我们定义一个transform操作,将在整个数据集上动态应用该操作。该操作应用一些基本的图像预处理:随机水平翻转、重新调整,最后使它们的值在 [−1,1][−1,1] 范围内。
采样
由于我们将在训练期间从模型中采样(以便跟踪进度),我们定义了下面的代码。采样在本文中总结为算法2:
从扩散模型生成新图像是通过反转扩散过程来实现的:我们从𝑇𝑇开始,我们从高斯分布中采样纯噪声,然后使用我们的神经网络逐渐去噪(使用它所学习的条件概率),直到我们最终在时间步𝑡=0𝑡=0结束。如上图所示,我们可以通过使用我们的噪声预测器插入平均值的重新参数化,导出一个降噪程度较低的图像 𝐱𝑡−1𝑥𝑡−1。请注意,方差是提前知道的。
理想情况下,我们最终会得到一个看起来像是来自真实数据分布的图像。
总结
请注意,DDPM论文表明扩散模型是(非)条件图像有希望生成的方向。自那以后,diffusion得到了(极大的)改进,最明显的是文本条件图像生成。下面,我们列出了一些重要的(但远非详尽无遗的)后续工作:
-
改进的去噪扩散概率模型(Nichol et al., 2021):发现学习条件分布的方差(除平均值外)有助于提高性能
-
用于高保真图像生成的级联扩散模型([Ho et al., 2021):引入级联扩散,它包括多个扩散模型的流水线,这些模型生成分辨率提高的图像,用于高保真图像合成
-
扩散模型在图像合成上击败了GANs(Dhariwal et al., 2021):表明扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量
-
无分类器扩散指南([Ho et al., 2021):表明通过使用单个神经网络联合训练条件和无条件扩散模型,不需要分类器来指导扩散模型
-
具有CLIP Latents (DALL-E 2) 的分层文本条件图像生成 (Ramesh et al., 2022):在将文本标题转换为CLIP图像嵌入之前使用,然后扩散模型将其解码为图像
-
具有深度语言理解的真实文本到图像扩散模型(ImageGen)(Saharia et al., 2022):表明将大型预训练语言模型(例如T5)与级联扩散结合起来,对于文本到图像的合成很有效
请注意,此列表仅包括在撰写本文,即2022年6月7日之前的重要作品。
目前,扩散模型的主要(也许唯一)缺点是它们需要多次正向传递来生成图像(对于像GAN这样的生成模型来说,情况并非如此)。然而,有正在进行中的研究表明只需要10个去噪步骤就能实现高保真生成。