Python构建人脸识别器

本文介绍了使用Python构建人脸识别器的过程,包括定义标签编码、提取图像特征、加载人脸级联文件、生成LBPH人脸识别器、训练和测试。通过OpenCV和sklearn库,实现对人脸的检测和识别。
摘要由CSDN通过智能技术生成

    人脸识别对于人类来说很简单,如果对于机器,如何才能构建一个人脸识别器。

    主要步骤如下:

    (1)             定义标签编码。在输入训练数据中,标签用单词表示,但我们需要数字来训练系统。

    (2)             从每幅图中提取ROI属性值和标签编码器。

    (3)             加载人脸级联文件。

    (4)             生成局部二值模式直方图人脸识别器。

    (5)             用训练集数据训练人脸识别器。

    (6)             加载测试数据所在路径,将批量数据读取到内存,用人脸级联文件来检测器确定人脸的位置。

    (7)             对于每个人的脸ROI,运行人脸识别器,将标签转换为单词。

    (8)             直接在图片打上分类文字,并展示。

    (9)             关闭cv2。

    源代码如下:

import os
import cv2
import numpy as np
from sklearn import preprocessing
# Class to handle tasks related to label encoding
class LabelEncoder(object):
    # Method to encode labels from words to numbers
    def encode_labe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值