大家都知道,现在AI特别火爆,研究人员也都想进入到这一领域,AI到底是什么?AI就是将原材料进行加工成产品,大数据就是原材料,AI就是最终的产品。
概括一句话就是:将海量数据通过机器学习进行处理然后形成一个模型,最终能适用于场景的过程就是AI。
大家都知道,机器学习说起来简单,但背后有很多的事情要做,比如:预处理、特征抽取、数据建模、模型评估等等。在建模过程中,除了调优算法之外还有很多重要的环节。机器学习最重要取决了特征工程做得好不好了。
人工智能为什么这么火爆?相对于之前的商业智能,AI更加精准。BI是人对大数据的规则进行发现,AI是机器对大数据的规则自动进行发现。如果规则太多,机器一定会超过专家的,这就是现在为什么有些行业的机器学习能力部分超过一些专业人士,就不足为怪了。
AI的功能强大建立在以下几个约束条件:
(1)业务场景。我们现阶段的人工智能不是强人工智能,并不能像科幻电影里一样可以解决任何问题。能够用机器学习解决问题的前提之一,就是把业务问题转化为机器学习的建模问题。业务场景是特别重要。
(2)海量数据。我们现在的机器学习都是基于统计来学习相关的规则。根据数据历史,基于统计发现其中规律,然后再这些规律用于未来的数据预测。在历史数据里发现规则,需要海量的数据,这些海量数据应该特征丰富、数据质量高、覆盖率高。
(3)人才。这涉及到做算法人才、把算法在工程中实现的人才、产品化的人才以及将AI和业务系统集成的人才,这些都是属于AI的。
(4