深度学习
浅唱战无双
小硕一枚,AI初级,社会推荐,
展开
-
dropout的noise_shape含义
假设原始张量xxx的形状信息为[k,l,m,n][k,l,m,n][k,l,m,n],现在noiseshape=[k,1,1,n]noise_shape=[k,1,1,n]noiseshape=[k,1,1,n],xxx的第一个维度和noise_shape的第一个维度是一致的,都为kkk,就是说,原始张量的第一个维度的去留是随机的,但这个随机的“粒度”不再是以元素为单位,而是以这个“维度”为整体...原创 2019-12-12 20:51:03 · 1132 阅读 · 1 评论 -
一文读懂交叉熵的基本概念
在模型构建完毕后,下面的工作就是定义损失函数。损失函数的功能在于,衡量实际输出值和预期输出值之间的差异程度,井借此调节网络的参数。 对于多分类问题,最常用的损失函数就是交叉熵函数( Cros-enrorp)那什么是交叉熵呢?说到交叉熵,就不得不提一下“熵”的概念。熵的概念源自热力学。它是系统混乱度的度量,越有序,熵越小。反之,越杂乱无序,熵就越大。 在信息领域,信息论的开创者香农(Claude S...原创 2019-12-12 16:40:41 · 1770 阅读 · 0 评论 -
softmax的魅力
softmaxsoftmaxsoftmax(软最大值),势必有与之对应的HardMaxHardMaxHardMax(硬最大值)。hardMaxhardMaxhardMax其实就是我们常用的maxmaxmax函数,假如有三个数:z1,z2,z3z_1,z_2,z_3z1,z2,z3,现在想求这三个数最大值,直接比较就可以,大就是大,小就是小,没有争议。所以叫“硬最大值”,如果不是直接比较数值本...原创 2019-12-12 15:24:44 · 223 阅读 · 0 评论 -
Numpy实现简单的三层神经网络
输入X(60,1000),中间隐藏层的维度分别为:200,100,10 import numpy as np N,D_in,H_1,H_2,D_out=60,1000,200,100,10 x=np.random.randn(N,D_in) #(60,1000) y=np.random.rand(N,D_out)#(60,10) w1=np.random.randn(D_in,H_1)#(100...原创 2019-12-07 14:31:05 · 438 阅读 · 0 评论 -
word2vec总结(一)
之前汇报时看到过词嵌入这部分,这里把自己看到过的总结在这里,尽可能写的全一点。 word2vec( 把词映射为实数域向量的技术也叫做词嵌入(word embedding)) 由来 为什么要引入word2vec:之前都是用one-hot编码表示结点信息,当然也可以用one-hot来表示词。虽然one-hot词向量构造起来很容易,但通常并不是⼀个好选择。⼀个主要的原因是,one-hot词向量⽆法准确...原创 2019-07-13 22:01:26 · 261 阅读 · 0 评论