Java8新特性——并行流与顺序流

        并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。

        Java8中将并行流进行了优化,我们很容易的对数据进行并行操作。Stream API可以声明性地通过parallel()与scqucntial()在并行流与顺序流之间进行切换。

        Fork-Join框架:是Java7提供的一个用于执行任务的框架,就是在必要的情况下,将一个大任务,进行拆分(Fork)成若干个小任务(拆分到不能再拆分),再将一个个的小任务运算的结果进行Join汇总。

        Fork-Join框架是ExecutorService接口的一种具体实现,目的是为了帮助更好的利用多处理器带来的好处。它是为那些能被递归地拆分成子任务的工作类型量身设计的。其目的在于能够使用所有有可用的运算能力来提升你的应用的性能。

Fork/Join 框架与传统线程池的区别

采用 “工作窃取”模式(work-stealing): 当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线 程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。

相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的 处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因 无法继续运行,那么该线程会处于等待状态。而在fork/join框架实现中,如果 某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子 问题的线程会主动寻找其他尚未运行的子问题来执行。这种方式减少了线程 的等待时间, 高了性能。

package ParallelFlow;

import java.util.concurrent.RecursiveTask;

public class ParallelFlow extends RecursiveTask<Long>{

    private long start;
    private long end;
    private static final long THRESHOLD = 10000;//临界值

    public ParallelFlow(long start, long end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Long compute() {
        long length = end - start;
        /*如果不到临界值就执行加操作*/
        if (length <= THRESHOLD){
            long sum = 0;
            for (long i = start;i<=end;i++){
                sum += i;
            }
            return sum;
        }else {
            long middle = (start + end) / 2;
            ParallelFlow left = new ParallelFlow(start, middle);
            left.fork();//拆分子任务,同时压入线程队列

            ParallelFlow right = new ParallelFlow(middle + 1, end);
            right.fork();

            return left.join() + right.join();
        }
    }
}
package ParallelFlow;

import org.junit.Test;

import java.time.Duration;
import java.time.Instant;
import java.util.concurrent.ForkJoinPool;
import java.util.stream.LongStream;

public class TestForkJoin {
        /*
         ForkJoin框架
        */
        @Test
        public void fun1(){
            Instant start = Instant.now();

            ForkJoinPool pool = new ForkJoinPool();
           ParallelFlow task = new ParallelFlow(0, 1000000000L);
            Long sum = pool.invoke(task);
            System.out.println(sum);

            Instant end = Instant.now();
            System.out.println("耗时时间为:" + Duration.between(start,end).toMillis());//耗时时间为:3873
        }
        /*
        普通for
        */
        @Test
        public void fun2(){
            Instant start = Instant.now();
            long sum = 0L;
            for (long i = 0;i<1000000000L;i++){
                sum += i;
            }
            System.out.println(sum);
            Instant end = Instant.now();
            System.out.println("耗时时间为:" + Duration.between(start,end).toMillis());//耗时时间为:4167
        }
        /*
         Java8并行流
        */
        @Test
        public void fun3(){
            Instant start = Instant.now();

            LongStream.rangeClosed(0,1000000000L)
                      .parallel()
                      .reduce(0,Long::sum);
            Instant end = Instant.now();
            System.out.println("耗时时间为:" + Duration.between(start,end).toMillis());//耗时时间为:3063
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值