如何构建大数据指标分析系统

本文探讨了在现有技术架构下如何设计指标分析系统,对比了离线分析报表、离线改进方案、实时分析报表的优缺点,强调了业务端宽表数据采集的重要性,以及如何通过高效存储和计算组件实现理想的数据分析过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、指标分析的基础分析

二、指标分析技术方案

三、结论


前言:技术是为了需求服务。技术的第一性原则是解决问题,不同的技术方案都能实现同样的需求,那在公司原有技术架构上,如何设计技术架构,尽量用最少的大数据组件解决多种应用场景问题。分析分为实事状态分析和预测分析(特征工程),本文用对事实状态指标分析为例,用多种技术方案构建指标分析系统。

一、指标分析的基础分析

1.大数据的指标分析场景:从主机往上分析,有机器的性能指标、中间件的应用指标、业务应用指标、业务指标;其中前三个和安全生产管理、监控、运维相关;业务指标和运营、决策分析相关;面向业务指标是主要的、可操作数据的分析系统。

2.数据分析阶段:数据分析系统会经过数据采集、数据处理、指标计算、结果应用四个阶段。

3.数据样式:数据的样式有OLTP数据库的结构化数据(ER模型或大宽表);日志等半结构化数据。

4.指标计算思考:分析和计算是两件事,业务要评估是需要分析挖掘还是实事呈现;数据分析和指标计算在技术层面没有强因果联系,但是定式思维导致在构建局部指标需求的时候,往往先构建分析模型(ODS和DWD),再依据DIM层构建DWS到OPS层的计算;这种方式带着传统OLTP计算方式的特征;数据分析阶段,到宽表之前,都是为了指标分析构建数据模型&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值