网易云课堂-吴恩达机器学习-学习归纳-2-单变量线性回归

本文深入探讨单变量线性回归模型,通过示例解释如何预测房价。介绍了模型表示、代价函数和梯度下降算法。利用训练集学习参数,目标是找到最小化建模误差的模型,通过梯度下降法求得代价函数最小值,以实现参数的优化更新。
摘要由CSDN通过智能技术生成

一、单变量线性回归模型表示

还是预测房价的例子,如下图所示。
在这里插入图片描述
预测一个面积为1250平方尺的房子应该卖多少钱?
首先构建一个模型,也许是条直线,如图中粉色线所示,大约能卖220000美元。
这个例子属于监督学习的范畴,更具体来说,这是一个回归问题。回归一词指的是,我们根据之前的
数据预测出一个准确的输出值,对于这个例子就是房价。在监督学习中我们会有一个数据集,这个数
据集被称为训练集,我们的任务就是从这个训练集中学习并预测房屋价格,用小写的 m m m来表示训练样本的数目。

训练集中的数据共有47行, m = 47 m=47 m=47,如下图所示:
在这里插入图片描述
用小写字母 x x x 来表示输入变量,往往也被称为特征,就是用 x x x 表示输入的特征,我们用 y y y 来表示输出变量或者目标,也就是我的预测结果,也就是上面表格的第二列。在这里我们用 ( x , y ) (x, y) (x,y) 来表示一个训练样本,在这个表格中的一行对应于一个训​​练样本。为了表示某个特定的训练样本,我们将使用 ( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i))来表示。进行房价预测的工作原理可以用下面的图来表示:
在这里插入图片描述
这里面的 h h h 代表学习算法的解决方案或函数,也称为假设(hypothesis)。
我们从上图可以看出,把训练集喂给我们的学习算法,然后输出一个函数,通常用 h h h 表示,该函数的输入是房屋尺寸大小,输出是该房屋的预测价格。 h h h 根据输入的 x x x 值来得出 y y y 值, h h h 可以看做是一个从 x x x y y y 的映射。现在的问题就转化为我们该如何表达 h h h 呢?
一种可能的表达方式为: h θ ( x ) = θ 0 + θ 1 x h_θ (x)=θ_0+θ_1 x hθ(x)=θ0+θ1x,因为只含有一个特征/输入变量,因此这样的问题叫做单变量线性回归问题。

二、代价函数

现在的任务就是确定一个 h θ ( x ) = θ 0 + θ 1 x h_θ (x)=θ_0+θ_1 x hθ(x)=θ0+θ1x 来最好地拟合我们的数据。
上式中的 θ 0 θ_0 θ0 θ 1 θ_1 θ1,我们称之为模型参数,现在的问题又转化为如何选择这两个参数值?选择不同的参数 θ 0 θ_0 θ0 θ 1 θ_1 θ1 我们会得到不同的假设函数,如下图所示。
在这里插入图片描述
我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差(modeling error)。
在这里插入图片描述
我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数
J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(θ_0,θ_1 )=\frac{1}{m}\sum\limits_{i=1}^{m}(h_θ (x^{(i)})-y^{(i)} )^2 J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))2 最小。
我们绘制一个等高线图,三个坐标分别为 θ 0 θ_0 θ0 和 $θ_1 $ 和 J ( θ 0 , θ 1 ) J(θ_0,θ_1) J(θ0,θ1)
在这里插入图片描述
可以看出在三维空间中存在一个点( θ 0 θ_0 θ0, θ 1 θ_1 θ1)使得 J ( θ 0 , θ 1 ) J(θ_0,θ_1) J(θ0,θ1)最小。
代价函数也被称作平方误差函数,有时也被称为平方误差代价函数。我们之所以要求出误差的平方和,是因为误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。还有其他
的代价函数也能很好地发挥作用,但是平方误差代价函数可能是解决回归问题最常用的手段了。

三、梯度下降

由上面可知,我们的目标就是求代价函数的最小值,即求 m i n J ( θ 0 , θ 1 ) minJ(θ_0,θ_1 ) minJ(θ0,θ1)
这里将介绍一种求解代价函数最小值的方法--------------------------梯度下降。
梯度下降的思想是:开始时我们随机选择一个参数的组合( θ 0 , θ 1 , . . . . . . , θ n θ_0,θ_1,......,θ_n θ0,θ1,......,θn),计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到找到一个局部最小值(local minimum),因为我们并没有尝试完所有的参数组合,所以不能确定我们得到的局部最小值是否便是全局最小值(global minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。
在这里插入图片描述
想象一下,你现在站在山的A点上环顾四周,正在思考从哪个方向下山。假设你发现了最佳的下山方向,迈着小碎步开始下山,走完一步,你再看看周围,然后再一次想想应该从什么方向迈着小碎步下山?然后你按照自己的判断又迈出一步,并依此类推,直到你接近山底的位置。不同的起始点开始进行梯度下降算法,你会得到一个不同的局部最优解,这就是梯度下降算法的一个特点,例如你从B点开始下山,可能会到达山底的另外一个位置。

批量梯度下降(batch gradient descent)算法的公式为:
θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_j := \theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1) θj:=θjαθjJ(θ0,θ1) ( j = 0 j = 0 j=0 and j = 1 j = 1 j=1)
其中 α \alpha α是学习率(learning rate),它决定了代价函数沿着梯度方向迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。

在这里插入图片描述
由上图可知:对于每个参数,我们分别求出更新值并赋给一个临时变量,待所有参数的更新值求出来
以后,再更新所有的参数。

梯度下降算法是用来做什么的?梯度下降算法的更新过程有什么意义?
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_j := \theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta) θj:=θjαθjJ(θ)
描述:对 θ θ θ赋值,使得 J ( θ ) J(θ) J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。其中 α \alpha α是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大。
在这里插入图片描述
假设代价函数的图像如上图所示,任取一点 ( θ 1 , J ( θ 1 ) ) (\theta_1,J(\theta_1)) (θ1,J(θ1)),过该点做切线, d J ( θ 1 ) d θ 1 \frac{\mathrm{d} J(\theta_1) }{\mathrm{d} \theta_1} dθ1dJ(θ1)是该切线的斜率,由上图可知,该斜率为正斜率, θ 1 θ_1 θ1更新后等于 θ 1 θ_1 θ1减去一个正数乘以 α \alpha α,所以新的 θ 1 θ_1 θ1是减小的。

下面我们讨论一下,学习率 α \alpha α对梯度下降的影响。
在这里插入图片描述
如果 α \alpha α太小了,结果就是只能像小宝宝一样一点点地挪动,去努力接近最低点,这样就需要很多步才能到达最低点,所以如果 α \alpha α太小的话,可能会需要很多步才能到达全局最低点。如果 α \alpha α太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果 α \alpha α太大,它会导致无法收敛,甚至发散。

问题:如果我们预先把 θ 1 θ_1 θ1放在一个局部的最低点,你认为下一步梯度下降法会怎样工作?
在这里插入图片描述
如果你的参数已经处于局部最低点,那么梯度下降法更新其实什么都没做(求导为0),它不会改变
参数的值,这也正是你想要的,因为它使你的解始终保持在局部最优点,这也解释了为什么即使学习
速率 α \alpha α 保持不变时,梯度下降也可以收敛到局部最低点。

我们来看一个例子,这是代价函数 J ( θ ) J(θ) J(θ)
在这里插入图片描述
我想找到它的最小值,首先初始化我的梯度下降算法,在那个品红色的点初始化,如果我更新一步梯
度下降,也许它会带我来到绿色的这个点,因为这个点的导数是相当陡的。现在,在这个绿色的点,
如果我再更新一步,你会发现我的导数,也即斜率,是没那么陡的。随着我接近最低点,我的导数越
来越接近零。所以,梯度下降一步后,新的导数会变小一点点。然后我想再梯度下降一步,在这个绿
点,我自然会用一个稍微跟刚才在那个品红点时比,再小一点的一步,到了新的红色点,更接近全局
最低点了,因此这点的导数会比在绿点时更小。所以,我再进行一步梯度下降时,我的导数项是更小
的, θ 1 θ_1 θ1更新的幅度就会更小。所以随着梯度下降法的运行,你移动的幅度会自动变得越来越小,直到最终移动幅度非常小,你会发现,已经收敛到局部极小值。

回顾一下,在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因
为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值
会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没
有必要再另外减小 α \alpha α

下面我们将用梯度下降法来求解线性回归问题。
在这里插入图片描述
对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即:

∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1) = \frac{\partial}{\partial \theta_j}\frac{1}{2m}\sum\limits_{i=1}^{m}(h_θ (x^{(i)})-y^{(i)} ) ^2 θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i))y(i))2
j = 0 j=0 j=0 时: ∂ ∂ θ 0 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{\partial}{\partial \theta_0}J(\theta_0,\theta_1)=\frac{1}{m} \sum\limits_{i=1}^{m}(h_θ (x^{(i)})-y^{(i) }) θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))
j = 1 j=1 j=1 时: ∂ ∂ θ 1 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ∗ x ( i ) ) \frac{\partial}{\partial \theta_1}J(\theta_0,\theta_1)=\frac{1}{m} \sum\limits_{i=1}^{m}((h_θ (x^{(i)})-y^{(i) } )*x^{(i)}) θ1J(θ0,θ1)=m1i=1m((hθ(x(i))y(i))x(i))

则算法改写成:
Repeat {
θ 0 θ_0 θ0 := θ 0 θ_0 θ0 α \alpha α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{1}{m}∑_{i=1}^m(h_θ (x^{(i)})-y^{(i) }) m1i=1m(hθ(x(i))y(i))

θ 1 θ_1 θ1 := θ 1 θ_1 θ1 α \alpha α 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ∗ x ( i ) ) \frac{1}{m}∑_{i=1}^m((h_θ (x^{(i)})-y^{(i) } )*x^{(i)}) m1i=1m((hθ(x(i))y(i))x(i))
}

我们刚刚使用的算法,有时也称为批量梯度下降。实际上,在机器学习中,通常不太会给算法起名字,但这个名字”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有m个训练样本求和。因此,批量梯度下降法这个名字说明了我们需要考虑所有这一批训练样本,而事实上,有时也有其他类型的梯度下降法,不是这种"批量"型的,不考虑整个的训练集,而是每次只关注训练集中的一些小的子集,后面会介绍到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值