归一化的原因
在进行机器学习训练时,通常一个数据集中包含多个不同的特征,例如在土壤重金属数据集中,每一个样本代表一个采样点,其包含的特征有经度、纬度、海拔、不同重金属含量等,这些特征所使用的量纲存在较大的区别,进而导致不同特征下的数值之间的差别也较大。在使用此数据集进行实验时,极有可能忽略了某些数值变化区间较小的特征指标对目标特征数据的影响,进而直接影响到实验的结果。
归一化前的数据:
为了解决上述问题,在使用该数据集进行相关实验前,通常需要使用归一化方法对数据进行预处理。归一化方法是机器学习中的一项基础工作,可以被通俗的理解为将不同的数据归为同一类。归一化方法有两种形式,一种为通过数学方法将所有的数据映射到0到1范围之内来方便进行处理,另外还有一种方式是将有量纲表达式变为无量纲表达式。由于在进行机器学习时,大部分情况都是将所有的数据映射到0到1范围之内即可,因此将分别针对这一形式中的几种归一化方法进行介绍。
归一化之后的数据:
1、最大最小归一化
最大最小归一化。这种方法是最简单的一种方法,它主要需要分别针对每一个特征变量,遍历这一个特征变量的所有值,然后保存其中的最大值与最小值,通过计算此