乘积最大子数组
给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
分析:本题和最大子数组和解法不一样,需要多加一个状态,即以第
i个元素结尾的最小值,因为若nums[i] 为负数,则乘以一个minf[i-1]的负数即为正数,有可能是最大值,因此本题需要维护两个状态
即根据元素的正负性进行分类讨论。
对于以第i个元素结尾的值来说:max有可能:正数*以i-1结尾的最大值,负数乘以以i-1结尾的最小值,负负得正,还有可能是nums[i]自身,三选一
min可能是:负数乘以以i-1结尾的最大值,正数乘以以i-1结尾的最小负数,或者nums[i]本身,三选一
答案就是maxF数组中的最大值
class Solution {
public int maxProduct(int[] nums) {
//明确maxF[i]表示以下标为i的元素结尾的连续子数组最大的值
//minF[i] 表示以下标为i的元素结尾的连续子数组最小的值
int n = nums.length;
int[] maxF = new int[n];
int[] minF = new int[n];
//复制nums数组到maxF和minF
System.arraycopy(nums,0,maxF,0,n);
System.arraycopy(nums,0,minF,0,n);
for(int i = 1;i < n;i++){
//这里nums[i]*minF[i-1] 因为有可能nums[i]为负数,而乘以一个最小负数,会得到一个较大的正数
maxF[i] = Math.max(maxF[i-1]*nums[i],Math.max(nums[i],nums[i]*minF[i-1]));
//最小值等于 min(正数*以前的最小负数,负数*以前的最大正数,或者自身值);
minF[i] = Math.min(minF[i-1]*nums[i],Math.min(nums[i],nums[i]*maxF[i-1]));
}
//这里求最大子数组
int ans = maxF[0];
for(int i = 1;i < maxF.length;i++){
if(maxF[i] > ans){
ans = maxF[i];
}
}
return ans;
}
}