python 从入门到放弃数据可视化

数据可视化--matplotlib与 pygal 使用

导入maplotlib常简写为: import matplotlib.pyplot as plt
 import matplotlib.pyplot as plt

1,折线图
t = [1,2,3]
plt.plot(t)  绘制折线图
plt.show()      打开matplotlib 查看器
plt.title("标题名",fontsize= ?)   图标标题及字体大小等
plt.xlabel()                       x轴标题及字体大小等
plt.ylabel()           y轴标题及字体大小等

plt.tick_params(axis = 'both', labelsize = 14)

plt.plot(x,y)    绘制x为横坐标,y为纵坐标的折线图


2,散点图
scatter()   

import matplotlib.pyplot as plt
plt.scatter(2,4,s =100 )  画出点2,4,s = n表示散点的大小
横纵坐标标题等设置同折线图

plt.axis([x_min,x_max,y_min,y_max])   对横纵坐标进行限定

批量计算:一种函数计算方法
xs = list(range(1,1001))
ys = [x**2 for x in xs]

删除数据点的轮廓 
plt.scatter(xs,ys,edgecolor = 'none', s=40)

plt.scatter(xs,ys,c=(0,0,0.8),edgecolor = "none",s=40)

保存图表
plt.savefig('squares_plot.png' , bbox_inches='tight')
第一个参数:文件名    第二个参数:指定将图表空白区域裁掉  I don't know

4,随机漫步
创建RandomWalk类决定起始位置与漫步点数,建立存储漫步坐标点的列表
choice(n1,n2,n3)   随机选择一个数,为-1,1时可以认为选择x轴或y轴前进方向

突出起点终点
plt.scatter(0,0,c=‘green’,edgecolors='none',s=100)

隐藏坐标轴
plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)

调整图表大小
plt.figure(figsize=(10,6))
plt.figure(dpi=128,figsize=(10,6))


5.pygal 直方图
生成数据:模拟掷色子  
1,定义一个色子类:
from random import randint

class Die()
    def __init__(self ,num_sides)
        self.num_sides = num_sides

    def roll()
        return randint(1,self.num_sides)

2,roll  100次

from die import Die()

die = Die()

results = []

for roll_num in range(100)
    result = die.roll()
    results = results.appenf(result)
print results()
3画直方图
将每次掷出点数数据存储在列表中。
hist = pygal.Bar()    创建一个没有任何数据的Bar类 ,用来画直方图的一个预设背景
hist.label =['','','']     为每个直方柱命名

hist.add("颜色名",列表数据)  根据数据画出直方图
hist.render_to_file('文件名.svg')  存储为.svg文件。

直方图打开时在网页中新建一个网页标签,再打开该文件。

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值