数据可视化--matplotlib与 pygal 使用
导入maplotlib常简写为: import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
1,折线图
t = [1,2,3]
plt.plot(t) 绘制折线图
plt.show() 打开matplotlib 查看器
plt.title("标题名",fontsize= ?) 图标标题及字体大小等
plt.xlabel() x轴标题及字体大小等
plt.ylabel() y轴标题及字体大小等
plt.tick_params(axis = 'both', labelsize = 14)
plt.plot(x,y) 绘制x为横坐标,y为纵坐标的折线图
2,散点图
scatter()
import matplotlib.pyplot as plt
plt.scatter(2,4,s =100 ) 画出点2,4,s = n表示散点的大小
横纵坐标标题等设置同折线图
plt.axis([x_min,x_max,y_min,y_max]) 对横纵坐标进行限定
批量计算:一种函数计算方法
xs = list(range(1,1001))
ys = [x**2 for x in xs]
删除数据点的轮廓
plt.scatter(xs,ys,edgecolor = 'none', s=40)
plt.scatter(xs,ys,c=(0,0,0.8),edgecolor = "none",s=40)
保存图表
plt.savefig('squares_plot.png' , bbox_inches='tight')
第一个参数:文件名 第二个参数:指定将图表空白区域裁掉 I don't know
4,随机漫步
创建RandomWalk类决定起始位置与漫步点数,建立存储漫步坐标点的列表
choice(n1,n2,n3) 随机选择一个数,为-1,1时可以认为选择x轴或y轴前进方向
突出起点终点
plt.scatter(0,0,c=‘green’,edgecolors='none',s=100)
隐藏坐标轴
plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)
调整图表大小
plt.figure(figsize=(10,6))
plt.figure(dpi=128,figsize=(10,6))
5.pygal 直方图
生成数据:模拟掷色子
1,定义一个色子类:
from random import randint
class Die()
def __init__(self ,num_sides)
self.num_sides = num_sides
def roll()
return randint(1,self.num_sides)
2,roll 100次
from die import Die()
die = Die()
results = []
for roll_num in range(100)
result = die.roll()
results = results.appenf(result)
print results()
3画直方图
将每次掷出点数数据存储在列表中。
hist = pygal.Bar() 创建一个没有任何数据的Bar类 ,用来画直方图的一个预设背景
hist.label =['','',''] 为每个直方柱命名
hist.add("颜色名",列表数据) 根据数据画出直方图
hist.render_to_file('文件名.svg') 存储为.svg文件。
直方图打开时在网页中新建一个网页标签,再打开该文件。
2.