一维热传导方程的推导

一维热传导方程的推导

模型建立

考虑一根具有定横截面积 A A A的杆,其方向为 x x x轴的方向(由 x = 0 x=0 x=0 x = L x=L x=L),如图1所示。

设单位体积的热能量为未知变量,叫做热能密度: e ( x , t ) e(x,t) e(x,t)

假设通过截面的热量是恒定的,杆是一维的。做到这一点的最简单方法是将杆的侧面完全绝热,这样热能就不能通过杆的侧面扩散出去。

x x x t t t的依赖对应于杆受热不均匀的情形;热能密度由一个截面到另一个截面是变化的。

热能守恒

考察杆介于 x x x x + Δ x x+\Delta x x+Δx之间的薄片,如图1所示。若热能密度在薄片内是常数,则薄片内的总能量是热能密度和体积(即横截面积乘以长度)的乘积:

E ( x , t ) = e ( x , t ) A Δ x E(x,t)=e(x,t)A\Delta x E(x,t)=e(x,t)AΔx

如果我们想知道薄片内部温度随时间变化多快,我们需要知道有多少热量进入或离开该区域。根据傅里叶定律(Fourier’s law),通过单位时间、单位面积、单位温差流动出去或流入进来(取决于温差符号) 的热量为常数 k k k。因此,在时刻 t t t时,在位置$x+\Delta x $处流出去或流入进来(取决于温差符号) 的总热量为:

Q o u t ( x + Δ x , t ) = − k A ∂ u ∂ x ( x + Δ x , t ) Q_{out}(x+\Delta x,t)=-kA\frac{\partial u}{\partial x}(x+\Delta x,t) Qout(x+Δx,t)=kAxu(x+Δx,t)

其中 ∂ u ∂ x \frac{\partial u}{\partial x} xu表示温度关于位置$x $ 的变化率。

类似地,在位置$x $处流入或流出(取决于温差符号) 的总热量为:

Q i n ( x , t ) = k A ∂ u ∂ x ( x , t ) Q_{in}(x,t)=kA\frac{\partial u}{\partial x}(x,t) Qin(x,t)=kAxu(x,t)

注意负号表示如果 ∂ u ∂ x \frac{\partial u}{\partial x} xu为正,则表示从高温区域向低温区域传递;反之亦然。

根据能量守恒原理,我们可以得到以下等式:

E ( x , t + Δ t ) − E ( x , t ) = Q i n ( x , t ) − Q o u t ( x + Δ x , t ) E(x,t+\Delta t)-E(x,t)=Q_{in}(x,t)-Q_{out}(x+\Delta x,t) E(x,t+Δt)E(x,t)=Qin(x,t)Qout(x+Δx,t)

这意味着在$\Delta t $时间内薄片内部储存或释放(取决于符号) 的总能量等于在该时间段内进入或离开该区域(取决于符号) 的总能量。

方程推导

代入上述等式,得到:

e ( x , t ) A Δ x ∂ u ∂ t ( x , t ) = − k A ∂ u ∂ x ( x + Δ x , t ) + k A ∂ u ∂ x ( x , t ) e(x,t)A\Delta x\frac{\partial u}{\partial t}(x,t)=-kA\frac{\partial u}{\partial x}(x+\Delta x,t)+kA\frac{\partial u}{\partial x}(x,t) e(x,t)AΔxtu(x,t)=kAxu(x+Δx,t)+kAxu(x,t)

将两边同时除以 A Δ x A\Delta x AΔx,得到:

e ( x , t ) ∂ u ∂ t ( x , t ) = − k ∂ u ∂ x ( x + Δ x , t ) − ∂ u ∂ x ( x , t ) Δ x e(x,t)\frac{\partial u}{\partial t}(x,t)=-k\frac{\frac{\partial u}{\partial x}(x+\Delta x,t)-\frac{\partial u}{\partial x}(x,t)}{\Delta x} e(x,t)tu(x,t)=kΔxxu(x+Δx,t)xu(x,t)

Δ x → 0 \Delta x \to 0 Δx0,利用极限定义,得到:

e ( x , t ) ∂ u ∂ t ( x , t ) = − k ∂ 2 u ∂ x 2 ( x , t ) e(x,t)\frac{\partial u}{\partial t}(x,t)=-k \frac{\partial^2u}{\partial x^2}(x,t) e(x,t)tu(x,t)=kx22u(x,t)

这就是一维热传导方程的基本形式。如果杆的横截面积不是常数,则需要对上式做一些修正。

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值