变分法求薛定谔方程

文章讨论了一维薛定谔方程在恒定势场中的应用,特别是在阶梯势能模型中的粒子行为。通过方程解的通式,确定了在阶梯左侧和右侧的波函数形式。利用边界条件和能流守恒,计算出粒子从右侧入射时的反射系数和透射系数,公式分别表示为反射系数(k-q)^2/(k+q)^2和透射系数4kq/(k+q)^2。
摘要由CSDN通过智能技术生成

根据一维时变薛定谔方程:

i ℏ ∂ ∂ t ψ ( x , t ) = − ℏ 2 2 m ∂ 2 ∂ x 2 ψ ( x , t ) + V ( x ) ψ ( x , t ) i \hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x)\psi(x,t) itψ(x,t)=2m2x22ψ(x,t)+V(x)ψ(x,t)

对于恒定的势场,可以将时间项视为 e − i E t / ℏ e^{-iEt/\hbar} eiEt/ℏ,其中 E E E 是粒子的能量。因此,薛定谔方程可以简化为:

E ψ ( x ) = − ℏ 2 2 m ∂ 2 ∂ x 2 ψ ( x ) + V ( x ) ψ ( x ) E \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + V(x)\psi(x) Eψ(x)=2m2x22ψ(x)+V(x)ψ(x)

在阶梯的右侧,方程可以写成:

E ψ ( x ) = − ℏ 2 2 m ∂ 2 ∂ x 2 ψ ( x ) E \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) Eψ(x)=2m2x22ψ(x)

这个方程的通解形式为:

ψ ( x ) = A e i k x + B e − i k x \psi(x) = A e^{ikx} + B e^{-ikx} ψ(x)=Aeikx+Beikx

其中 k = 2 m E / ℏ k = \sqrt{2mE}/\hbar k=2mE /ℏ。在阶梯的左侧,方程为:

E ψ ( x ) = − ℏ 2 2 m ∂ 2 ∂ x 2 ψ ( x ) + V 0 ψ ( x ) E \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + V_0 \psi(x) Eψ(x)=2m2x22ψ(x)+V0ψ(x)

这个方程的通解形式为:

ψ ( x ) = C e q x + D e − q x \psi(x) = C e^{qx} + D e^{-qx} ψ(x)=Ceqx+Deqx

其中 q = 2 m ( V 0 − E ) / ℏ q = \sqrt{2m(V_0-E)}/\hbar q=2m(V0E) /ℏ

考虑粒子从右侧入射,反射波的系数为 B B B,透射波的系数为 C C C。为了求解反射系数和透射系数,需要根据边界条件,在 x = 0 x=0 x=0 处匹配反射波和透射波。

首先考虑边界条件:

ψ ( 0 + ) = ψ ( 0 − ) \psi(0^+) = \psi(0^-) ψ(0+)=ψ(0)

∂ ψ ∂ x ( 0 + ) = ∂ ψ ∂ x ( 0 − ) \frac{\partial \psi}{\partial x}(0^+) = \frac{\partial \psi}{\partial x}(0^-) xψ(0+)=xψ(0)

根据这两个条件,可以列出两个方程:
求透射反射系数
A + B = C + D A + B = C + D A+B=C+D

i k ( A − B ) = q ( C − D ) ik(A - B) = q(C - D) ik(AB)=q(CD)

接下来,需要考虑粒子从右侧入射的情况。在 x → ∞ x\rightarrow\infty x 的极限下,只存在入射波和透射波:

ψ ( x ) → A e i k x + C e i q x \psi(x) \rightarrow A e^{ikx} + C e^{iqx} ψ(x)Aeikx+Ceiqx

因此,根据能流守恒的原理,反射波的系数 B B B 和透射波的系数 C C C 可以表示为:

B = k − q k + q A B = \frac{k-q}{k+q} A B=k+qkqA

C = 2 k k + q A C = \frac{2k}{k+q} A C=k+q2kA

因此,反射系数为:

R = ∣ B ∣ 2 ∣ A ∣ 2 = ( k − q ) 2 ( k + q ) 2 R = \frac{|B|^2}{|A|^2} = \frac{(k-q)^2}{(k+q)^2} R=A2B2=(k+q)2(kq)2

透射系数为:

T = ∣ C ∣ 2 ∣ A ∣ 2 = 4 k q ( k + q ) 2 T = \frac{|C|^2}{|A|^2} = \frac{4kq}{(k+q)^2} T=A2C2=(k+q)24kq

综上所述,粒子从一维阶梯的右侧入射时,反射系数为 ( k − q ) 2 / ( k + q ) 2 (k-q)^2/(k+q)^2 (kq)2/(k+q)2,透射系数为 4 k q / ( k + q ) 2 4kq/(k+q)^2 4kq/(k+q)2。其中 k = 2 m E / ℏ k = \sqrt{2mE}/\hbar k=2mE /ℏ q = 2 m ( V 0 − E ) / ℏ q = \sqrt{2m(V_0-E)}/\hbar q=2m(V0E) /ℏ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值