题意:n个点的图,求s到t经过至少k条边的最短路。
1<=n<=50 , 1<= k <=10000
设恰好经过k条边的最短路为dis[k][i][j]
预处理很容易,但是TLE
发现dis[a+b][i][j] = min(dis[a][i][k] + dis[b][k][j])总是成立
发现预处理时间复杂度过大,处理询问复杂度过小(O(1))
考虑把复杂度移到询问上,分块预处理,对于k%100==0存dis[k]
再对于k<100存dis[k]
这样答案就是两个dis合并,可以O(n)求答案,
对于至少这个要求再处理一下就行,细节有点。
upd:这个技巧被称作为光速幂
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define maxn 55
#define LL long long
using namespace std;
int n,m;
int dis[102][maxn][maxn],dist[102][maxn][maxn];
template<class T>inline void read(T &res)
{
char ch;
for(;!isdigit(ch=getchar()););
for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0');
}
void solve(int d1[maxn][maxn],int d2[maxn][maxn],int d3[maxn][maxn])
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d3[i][j] = min(d3[i][j] , d1[i][k] + d2[k][j] );
}
int main()
{
int T;
read(T);
for(;T--;)
{
int u,v;
int w;
read(n),read(m);
memset(dist,0x3f,sizeof dist);
memset(dis,0x3f,sizeof dis);
for(int i=1;i<=m;i++)
{
read(u),read(v),read(w);
dis[1][u][v] = min(dis[1][u][v] , w);
}
for(int i=2;i<=101;i++)
solve(dis[1],dis[i-1],dis[i]);
memcpy(dist[1],dis[100],sizeof dis[100]);
for(int i=2;i<=101;i++)
solve(dist[1] , dist[i-1], dist[i]);
for(int i=100;i>=0;i--)
for(int x=1;x<=n;x++)
for(int y=1;y<=n;y++)
dis[i][x][y] = min(dis[i+1][x][y] , dis[i][x][y]),
dist[i][x][y] = min(dist[i+1][x][y] , dist[i][x][y]);
for(int i=1;i<=n;i++) dis[0][i][i] = dist[0][i][i] = 0;
int q;
read(q);
for(;q--;)
{
read(u),read(v),read(w);
int ans=0x3f3f3f3f,a = w / 100,b = w % 100;
for(int i=1;i<=n;i++)
ans=min(ans,min(dis[b][u][i] + dist[a][i][v] , dis[0][u][i] + dist[a+1][i][v]));
if(ans==0x3f3f3f3f) ans = -1;
printf("%d\n",ans);
}
}
}