HDU 6331 Walking Plan

17 篇文章 0 订阅
16 篇文章 0 订阅

题意:n个点的图,求s到t经过至少k条边的最短路。

1<=n<=50 , 1<= k <=10000

设恰好经过k条边的最短路为dis[k][i][j]

预处理很容易,但是TLE

发现dis[a+b][i][j] = min(dis[a][i][k] + dis[b][k][j])总是成立

发现预处理时间复杂度过大,处理询问复杂度过小(O(1))

考虑把复杂度移到询问上,分块预处理,对于k%100==0存dis[k]

再对于k<100存dis[k]

这样答案就是两个dis合并,可以O(n)求答案,

对于至少这个要求再处理一下就行,细节有点。

upd:这个技巧被称作为光速幂

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define maxn 55
#define LL long long
using namespace std;

int n,m;
int dis[102][maxn][maxn],dist[102][maxn][maxn];

template<class T>inline void read(T &res)
{
    char ch;
    for(;!isdigit(ch=getchar()););
    for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0');
}

void solve(int d1[maxn][maxn],int d2[maxn][maxn],int d3[maxn][maxn])
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d3[i][j] = min(d3[i][j] , d1[i][k] + d2[k][j] );
}

int main()
{

    int T;
    read(T);
    for(;T--;)
    {
        int u,v;
        int w;
        read(n),read(m);
        memset(dist,0x3f,sizeof dist);
        memset(dis,0x3f,sizeof dis);

        for(int i=1;i<=m;i++)
        {
            read(u),read(v),read(w);
            dis[1][u][v] = min(dis[1][u][v] , w);
        }

        for(int i=2;i<=101;i++)
            solve(dis[1],dis[i-1],dis[i]);
        memcpy(dist[1],dis[100],sizeof dis[100]);

        for(int i=2;i<=101;i++)
            solve(dist[1] , dist[i-1], dist[i]);

        for(int i=100;i>=0;i--)
            for(int x=1;x<=n;x++)
                for(int y=1;y<=n;y++)
                    dis[i][x][y] = min(dis[i+1][x][y] , dis[i][x][y]),
                    dist[i][x][y] = min(dist[i+1][x][y] , dist[i][x][y]);

        for(int i=1;i<=n;i++) dis[0][i][i] = dist[0][i][i] = 0;

        int q;
        read(q);
        for(;q--;)
        {

            read(u),read(v),read(w);
            int ans=0x3f3f3f3f,a = w / 100,b = w % 100;
            for(int i=1;i<=n;i++)
                ans=min(ans,min(dis[b][u][i] + dist[a][i][v] , dis[0][u][i] + dist[a+1][i][v]));
            if(ans==0x3f3f3f3f) ans =  -1;
            printf("%d\n",ans);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值