python 实现单调性,相关性,鲁棒性

该代码段使用Python的Scipy、Pandas和Math库来计算数据列的单调性、相关性和鲁棒性。首先,通过差分计算单调性;然后,计算相关性系数;最后,应用Savitzky-Golay滤波器评估数据的鲁棒性。结果以打印的形式展示。虽然与MATLAB方法有些微小误差,但不影响整体分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import scipy
import pandas as pd
import math


def monotonicity(df_ori, col):
    df = df_ori.diff().dropna()
    data_x = df[col].values
    values_x = sum([1 if i > 0 else 0 for i in data_x])
    values_x_2 = sum([1 if i < 0 else 0 for i in data_x])
    mon = abs((values_x - values_x_2) / len(data_x))
    print(" 单调性:", mon)


def correlation(df_ori, col):
    data = df_ori[col].values.tolist()
    length = len(data)
    lis_t = [i/length for i in range(length)]
    val_a = len(data) * sum([i*j for i, j in zip(data, lis_t)]) - (sum(data) * sum(lis_t))
    val_b = math.sqrt(length * sum([pow(i, 2) for i in data]) - pow(sum([i for i in data]), 2))
    val_c = math.sqrt(length * sum([pow(i, 2) for i in lis_t]) - pow(sum([i for i in lis_t]), 2))
    corr = val_a / (val_b * val_c)
    print(" 相关性:", corr)


def robustness(df_ori, col):
    data = df_ori[col].values.tolist()
    y_smooth = scipy.signal.savgol_filter(data, 5, 3)
    res = [abs(i-j) for i, j in zip(y_smooth, data)]
    rob = sum([math.exp(-i) for i in res])/len(data)
    print(" 鲁棒性:", rob)


if __name__ == '__main__':
    df_ori = pd.read_excel(r'./HI.xlsx', header=None)
    col = 0
    monotonicity(df_ori, col)
    correlation(df_ori, col)
    robustness(df_ori, col)

之前找了一下只有matlab里面有可供调用的方法,使用python实现了一版

有点误差但影响不大

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值