数据结构与算法之美(笔记13)堆

如何理解“堆”?

堆的要求:

  • 堆是一个完全二叉树
  • 堆中每一个节点的值都必须大于等于(或者小于等于)其子树中每个节点的值。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做“大顶堆”。对于每个节点的值都小于等于子树中每个节点的值的堆,我们叫做“小顶堆”。

如何实现一个堆?

我们知道,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要左右字节的指针,单纯地通过数组的下标,就可以找到一个也节点的左右子节点和父节点。

从图中,我们知道,数组中下标为i的节点的左子节点,就是下标为i*2的节点,右子节点就是下标i*2+1的节点,父节点就是下标为i/2的节点。

知道了应该如何存储一个堆。那么堆支持什么操作呢?

1.往堆中插入一个元素

往堆中插入一个元素之后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,但如果只是放在后面的话,就不符合堆的定义了。于是我们就需要进行调整,让其重新满足堆的特性。这个过程我们起了一个名字,就叫做堆化。 

堆化比较简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

这里给出代码的实现:

#include <iostream>
using namespace std;

class Heap{
private:
    int* arr;
    int capacity;
    int used;
public:
    Heap(int size){
        arr = new int[size+1];// 从1开始
        capacity = size;
        used = 1;
    }
    // 插入操作
    void insert(int elem){
        if(used >= capacity) return;
        arr[used++] = elem;
        int i = used;
        while(arr[i] > arr[i/2] && i/2 > 0){
            int temp = arr[i];
            arr[i] = arr[i/2];
            arr[i/2] = temp;
            i = i/2;
        }

    }
};

2.删除堆顶元素

从堆的定义我们知道,任何节点的值都大于等于子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。如果我们删除堆顶元素之后,就需要把第二个大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

但是这样有个问题,如图会出现一个数组的空洞。

实际上,我们可以把最后一个节点放到堆顶,然后利用相同的父子节点对比方法,对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这是从上往下的堆化方法。

这里也给出代码的实现:

    // 删除堆顶操作
    void Delete_max(){
        arr[1] = arr[used];
        used--;
        int i = 1;
        while(true){
            int maxpos = i;
            if(i*2 <= capacity && a[i] < a[2*i]) maxpos = 2*i;
            if(i*2+1 <= capacity && a[maxpos] < a[2*i+1]) maxpos = 2*i+1;
            if(maxpos == i) break;

            int temp = arr[i];
            arr[i] = arr[maxpos];
            arr[maxpos] = temp;

            i = maxpos;
        }
    }

我们知道,一个包含n个节点的完全二叉树,树的高度不会超过log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素或者删除堆顶元素的时间复杂度都是O(logn)。

如何实现堆排序?

这里我们借助堆这种数据结构实现的排序算法,就叫做堆排序。这种堆排序方法的时间复杂度非常稳定,是O(logn)的,并且还是原地排序算法。我们可以把堆排序的过程大致分解成两个大的步骤,建堆和排序

1.建堆

有两种实现的思路:第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含n个数组,但是我们可以假设,起初堆中只包含一个数据,就是下标为1的数据。然后,我们调用前面讲的插入操作,将下标从2到n的数据一次插入到堆中。这样我们就将包含n个数据的数组,组织成了堆。

第二种思路,跟第一种截然相反,也是我这里要详细要讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。从8开始是因为叶子节点无法向下堆化了。

 这里给出代码的实现:

void heapify(int* arr,int size,int pos){
    while(true){
        int maxpos = pos;
        if(arr[pos] <= arr[pos*2] && pos*2 <= size) maxpos = 2*pos;
        if(arr[maxpos] < arr[pos*2+1] && pos*2+1 <= size) maxpos = 2*pos+1;
        if(maxpos == pos) break;

        int temp = arr[pos];
        arr[pos] = arr[maxpos];
        arr[maxpos] = temp;

        pos = maxpos;
    }
}

void build_Heap(int* arr,int size){
    for(int i=size/2;i>=1;--i){
        heapify(arr,size,i);
    }
}

代码中,我们从下标n/2开始到1的数据进行堆化,下标是n/2+1到n的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从n/2+1 到n的节点都是叶子节点。

时间复杂度分析:

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这节点的高度k成正比。

我们只要把每个节点的高度求和,得出的就是建堆的时间复杂度。

我们利用高中学过的错位相减法,可以求出来。

最后得到这个结果 

 

因为h= log2n,代入公式s,可以得到s = O(n),所以建堆的时间复杂度就是O(n)。

2.排序

思路:建堆之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为n的位置。

这个过程类似上面讲的“删除顶堆元素”的操作,当堆顶元素移除之后,我们把下标为n的元素放到堆顶,然后再通过堆化的方法,将剩下的n-1个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是n-1的位置,一直重复,直到最后堆中只剩下下标为1的一个元素,排序工作就完成。

这里给出代码的实现:

void heap_sort(int* arr,int size){
    build_Heap(arr,size);
    int k = size;
    while(k>0){
        int temp = arr[1];
        arr[1] = arr[k];
        arr[k] = temp;

        k--;
        heapify(arr,k,1);
    }
}

 分析:

整个堆排序的过程,都只需要极个别临时的存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是O(n),排序过程的时间复杂度是O(nlogn),所以,堆排序整体的时间复杂度就是O(nlogn)。

堆排序不是稳定的算法,因为最后一个位置跟第一个位置交换位置,有可能打乱顺序。

堆排序与快速排序哪个好?

在日常的开发中,快速排序要比对排序性能好,为什么呢?

1.堆排序数据访问的方式没有快速排序好

对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面这个例子,对堆顶节点进行堆化,会依次访问数组下标是1,2,4,8的元素,而不是像快速排序那样,局部顺序访问,这样对cpu缓存是不友好的。

2.对于同样的数据,在排序的过程中,堆排序的算法交换次数更对于快速排序

我们在讲排序的时候,提过两个概念,有序度和无序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或者移动)。快速排序数据交换的次数不会比逆序度多。

但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低,比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值