面试经典150题——判断子序列

本文介绍了两种解决LeetCode题号392的字符串子序列问题的方法:双指针法(O(n+m)时间复杂度)和动态规划(O(m*26+n)时间复杂度)。作者提供了详细的代码实现并讨论了它们的空间复杂度。
摘要由CSDN通过智能技术生成

题目来源

力扣每日一题;题序:392

我的题解

方法一 双指针

分别使用一个指针控制两个字符串的遍历,当两个指针的位置的字符相同时,同时移动两个指针,否则只移动t的指针。

时间复杂度:O(n+m)。最大时间复杂度就是刚好两个字符串都遍历一遍
空间复杂度:O(1)

public boolean isSubsequence(String s, String t) {
    int l1=0,l2=0;
    int n1=s.length(),n2=t.length();
    while(l1<n1&&l2<n2){
        if(s.charAt(l1)==t.charAt(l2)){
            l1++;
            l2++;
        }else{
            l2++;
        }
    }
    return l1==n1;
}
方法二 动态规划

参考官方题解

时间复杂度:O(m×∣Σ∣+n),其中 n 为 s 的长度,m 为 t 的长度,Σ 为字符集,在本题中字符串只包含小写字母,∣Σ∣=26。预处理时间复杂度 O(m),判断子序列时间复杂度 O(n)。
空间复杂度:O(m×∣Σ∣),为动态规划数组的开销。

public boolean isSubsequence(String s, String t) {
    int n=s.length(),m=t.length();
    //dp[i][j]表示字符串 t 中从位置 i 开始往后字符 j 第一次出现的位置。
    int dp[][]=new int[m+1][26];
    //初始每个字符第一次出现的位置为t的末尾
    for(int i=0;i<26;i++){
        dp[m][i]=m;
    }
    
    for(int i=m-1;i>=0;i--){
    // 
        int temp=t.charAt(i)-'a';
        for(int j=0;j<26;j++){
        //
            if(j==temp)
                dp[i][j]=i;
            else
                dp[i][j]=dp[i+1][j];
        }
    }
    int index=0;
    for(int i=0;i<n;i++){
        int temp=s.charAt(i)-'a';
        if(dp[index][temp]>=m)
            return false;
        index=dp[index][temp]+1;
    }
    return true;
} 

有任何问题,欢迎评论区交流,欢迎评论区提供其它解题思路(代码),也可以点个赞支持一下作者哈😄~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜的小彭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值