目标检测论文《Automatic adaptation of object detectors to new domains using self-training》

一、全文概述

  • 这篇文章对目标检测的领域自适应问题进行研究。在一个数据集(源域)下训练的检测模型如何用另一个没有标记的数据集(目标域)进行训练,以在这个数据集上得到较好的检测效果,这是这篇文章想要解决的问题。
  • 文章的核心思路是使用源域数据训练好的模型推理目标域上的数据,选取置信度较高的推理结果加入训练集合,再训练模型,使模型逐渐学到目标域的数据分布。需要解决的难题是如何滤除推理结果中的噪声,为此,文章提出了两个措施:①依据检测结果的得分,为每个推理结果设置一个soft label,再通过映射关系使目标域检测分数的分布尽可能与源域相同;②文章的目标域是视频数据,因此借助了目标跟踪模型来获得目标的时序信息(间隔帧出现的目标极大概率会在当前帧出现),将检测器漏检而跟踪器检测到的目标也加入训练数据集。
  • 这篇文献的贡献在于并没有加深网络层次,只通过巧妙构建目标域的训练数据集和设置soft label来完成领域迁移。

二、方法概述

1. 如何构建目标域的训练数据集

  • 第一步,基于源域数据训练得到的模型用于目标域数据的推理,将得分超过阈值θ的检测结果视为目标域的正类样本。这里的θ值通过经验得到,论文中对人脸检测问题取值为0.5,对行人检测问题取值为0.8
  • 第二步,基于目标域的目标追踪结果优化第一步得到的训练集数据。将追踪器追踪到而检测器未检测到的目标也加入训练数据集,这里利用了视频天然包含的时序信息。这些追踪器追踪到而检测器未检测到的目标被视为hard example

2. 为训练集数据标记soft label

在这里插入图片描述

  • 其中si代表每个训练集样本的soft score,若该样本来源于检测器,则si的值为检测得分,若来源于追踪器,则其值为定值θ。最终的soft labelsoft score与样本正类标签(值为1)线性插值得到。
  • 追踪器得到的检测结果是hard example,因此可令θ=1,λ=1来保证hard examplesoft label为1,而其他easy example(检测器得到的结果)为检测得分(小于1)。
  • 另外一种对soft label进行处理的方式是将目标域的得分分布变换至于源域得分分布近似,这基于一个假设:如果检测器对目标域的检测结果的分布与源域的结果结果分布近似的话,检测器效果会变好。这种映射的效果如下图,映射的实现方式我没看懂,贴一下论文原文:
    在这里插入图片描述
    在这里插入图片描述

三、实验结果

  • 论文实验验证了两对领域迁移的结果,一对是WIDER图片数据集和CS6视频数据集,进行人脸检测的迁移;一对是BDD白天的清晰视频数据和BDD的其他数据,进行行人检测的迁移,如下表所示:
    在这里插入图片描述
  • WIDER->CS6的实验结果如下
    在这里插入图片描述
  • BDD(clear, daytime) -> BDD(rest)的实验结果如下
    在这里插入图片描述
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值