目标检测论文阅读笔记:《ThunderNet: Towards Real-time Generic Object Detection on Mobile Devices》

本文提出ThunderNet,一种基于ShuffleNetV2的轻量级目标检测网络,通过CEM和SAM模块提升特征融合与注意力机制,实现高效目标检测。采用5x5卷积替代3x3卷积,优化网络结构,同时增加浅层特征通道数,保持轻量化特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 概述

  • 本文基于ShuffleNetV2提出了一个轻量目标检测网络,称为ThunderNet,主要有两个创新点:①CEM(Context Enhancement Module),与FPN类似,用于融合浅层特征和深层特征;②SAM(Spatial Attention Module),用于增强目标特征
  • 轻量化体现在两方面:①将ShuffleNetV2中3x3卷积更换为5x5卷积,在增大感受野使特征包含更多空间信息的同时降低参数量;②移除conv5的同时在之前的stage中增加channel数,这在不增加参数量的情况下可使浅层特征增多。

2 网络框架

2.1 整体框架

在这里插入图片描述

2.2 CEM模块

在这里插入图片描述

  • 类似FPN,其意义在于融合多个尺度信息,使生成的特征包含更多的空间信息

2.3 SAM模块

在这里插入图片描述

  • RPN用于分类前景背景,其中背景特征会被抑制,因此论文中提出将RPN特征作为监督信号用来抑制CEM特征中的背景部分,增强CEM特征中的前景部分。
  • 该结构的另外一个优点是反向传播过程中这里也会产生梯度,也算是RPN结构参数更新时的监督信号

3 实验

  • 算法对比

在这里插入图片描述

  • 不同分辨率输入图片

在这里插入图片描述

  • 不同backbone

在这里插入图片描述

  • 消融实验
    在这里插入图片描述
  • SAM模块效果

在这里插入图片描述

4 总结

  • CEM中增大特征感受野的思路不错,也可以使用空洞卷积等,可以借鉴
  • 将RPN特征作为监督信号引入很新颖,值得学习
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值