机器学习
小布归来了
这个作者很懒,什么都没留下…
展开
-
过拟合(Over-fitting) 和 欠拟合(Under-fitting)
初学机器学习和深度学习的时候,我们常常会遇到 "过拟合" 和 ''欠拟合" 这两个看似不明所以的数学概念,今天我就专门讲一讲它们具体是怎么一回事。拟合(fitting)要理解过拟合和欠拟合,我们首先要明白什么是 "拟合"。通俗来讲,当我们想要了解平面中样本点所具有的统一规律时,或者说通过一条怎样的光滑曲线可以更贴切地描述黄色样本点时,拟合就是我们要使用的手段或方法。如上面中间图所示,我...原创 2019-10-18 11:00:42 · 2460 阅读 · 0 评论 -
决策树 (Decision Tree)- 机器学习算法
今天来回顾一下一种很古老,又很好理解的机器学习算法--决策树算法,英文名叫Decision Tree。简介决策树是一种基本的分类与回归方法,表明它既可以做分类算法,也可以作为回归算法,同时也特别适合集成学习(比如随机森林)。构建决策树本质上是一个递归的过程。通常是一个递归地选择最有特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。在分类问题中,它表示基...原创 2019-10-21 14:37:01 · 2939 阅读 · 0 评论 -
聚类算法总结
相比较于分类和回归问题的算法,聚类算法因为是没有目标的(计算机需要自己定义类别),所以准确度就没那么高,大家对它的期待就不太高,但它确实是有用的,一般作为有监督学习的辅助算法存在(有时候作为监督学习中稀疏特征的预处理)。下面我就将自己学到的聚类的相关内容分享一下。----------------------------------------------------------------...原创 2019-08-19 17:11:17 · 1820 阅读 · 0 评论 -
朴素贝叶斯算法总结
朴素贝叶斯应该是机器学习领域最简单的一种算法,但这只是在数学层面的"简单"。如果要深挖下去,考虑先验概率和后验概率,用的不顺溜的话也特别复杂。为什么说它 "朴素" 呢?因为它有两个先决条件(或限制条件):条件(特征)独立假设:一个特征出现的概率,与其他特征(条件)独立。(真实应用中是不可能独立的) 特征均等假设:每个特征同等重要。(真实应用中是不可能均等的)注:就像最大熵模型一样,...原创 2019-08-21 17:45:18 · 1501 阅读 · 0 评论 -
交叉验证(Cross-Validation)
今天我们就来详细了解一下 "交叉验证" 这个概念!首先来看一下,什么是交叉验证?交叉验证,是我们在学习机器学习建模中经常能遇到的一种方法。顾名思义,它就是通过"交叉" (将原始数据拆分成多种不同数据组合)的方式对模型对象进行 "验证" (精确度评估:损失函数,方差,偏差)的处理工具。交叉验证(Cross-validation)主要用于建模应用中,例如PCR 、PLS 回归建模中。在给...原创 2019-10-11 11:23:26 · 13833 阅读 · 0 评论