小波分析在处理无线信号特征数据中的应用

本文探讨了无线信号在人体姿态识别中的应用,利用小波分析和框架理论对无线信号特征数据进行处理,转化为特征向量,以提高姿态识别的准确性。小波分析提供了时频分析,而框架理论为信号处理提供了新的视角。通过预处理、子带处理和后处理步骤,实现了无线信号的高效分析,为未来的移动计算应用提供了新途径。
摘要由CSDN通过智能技术生成

摘要: 随着无线传感技术的发展,无线信号已经成为最普遍的信号,当一个目标停留在不同的位置,执行不同的活动,或者做不同的手势,就会对周围无线信号特征产生不同影响。无论我们身处何方,我们周围总会有许多无线信号,研究表明,人类行为对周围无线信号特征的影响可以作为一种强大的传感工具来定位和识别附近的人的活动。通过小波分析以及框架理论,对无线信号特征数据进行处理,变成特征向量,以便于后面对特征数据的分类,更好的来定位和识别附近的人的活动。

关键词:无线信号,小波分析,特征向量

目录
1生活中的无线信号 1
1.1无线信号的发展及作用 1
1.2人体姿态识别的发展 1
2小波分析的发展 2
3框架理论的发展 4
4框架多分辨分析 5
4.1 多分辨分析及其Mallat算法 5
4.1.1两尺度方程 5
4.1.2系数分解的快速算法 5
4.2 框架多分辨分析 6
5框架多分辨分析在信号处理中的应用 8
5.1对无线信号的处理过程 8
5.2 对离散信号的处理 8
6总结 10
参考文献 11

1生活中的无线信号
1.1无线信号的发展及作用
随着无线传感技术的发展,无线信号已经成为最普遍的信号,当一个目标停留在不同的位置,执行不同的活动,或者做不同的手势,就会对周围无线信号特征产生不同影响。无论我们身处何方,我们周围总会有许多无线信号,研究表明,人类行为对周围无线信号特征的影响可以作为一种强大的传感工具来定位和识别附近的人的活动。通过分析一个人对周围无线信号特征的影响来判断这个人活动及姿态。它不需要照明,有更好的覆盖,不需要为用户配备任何设备,并且可以保护用户的身份隐私,克服了传统方法的弊端。基于上述优势和无线信号的普及,利用无线信号特征的变化对人体姿态进行识别成为未来移动计算应用的一种很有前景的技术,它将在智能城市、智能空间和智能家居等智能应用中发挥重要作用。
1.2人体姿态进行识别的发展
人体姿态识别研究主要有,基于视频的人体姿态识别,基于穿戴设备的人体姿态识别和基于无线信号特征的人体姿态识别。传统的方法主要是使用可穿戴传感器、照相机或雷达,来感知一个人的位置和活动。然而,这些传统方法都有一定的缺点。可穿戴传感器的方法很不方便,我们总是忘记穿戴传感器;基于摄像头的识别方法对照明和视线范围有严格要求,并且可能导致隐私泄露;基于雷达的方法是昂贵的,并且具有有限的传感范围。通过分析一个人对周围无线信号特征的影响来判断这个人活动及姿态。它不需要照明,有更好的覆盖,不需要为用户配备任何设备,并且可以保护用户的身份隐私,克服了传统方法的弊端。

2小波分析的发展
小波分析是分析发展史上里程碑式的进展,是世纪年代正式形成的一种新的数学方法,它被看作是多元调和分析这一数学领域半个世纪以来的工作结晶,其基础理论知识涉及到泛函分析、分析、信号与系统、数字信号处理等方面,同时具有理论深刻和应用广泛的双重意义。小波分析分别被纯粹数学家与研究石油勘探数据处理、量子场论、声学等领域的应用数学家独立发现,它是纯粹数学与应用数学殊途同归的又一个光辉例子。由于小波分析的“自适应性质”和“数学显微镜性质”,使其被广泛应用于基础科学、应用科学尤其是信息科学、信号分析的方方面面,例如,函数论、量子场论、信号处理、图像处理与传输、模式识别人像识别、话音识别、天体识别等、地震勘探、音乐、雷达、成像、彩色复印、流体湍流、机器视觉、机械故障诊断与监控、分形及数字电视等。它不仅成为数学家们研究的一个热点,同时也引起了物理学家、生物学家、工程师等其它领域科学工作者的广泛关注。它的理论研究与实际应用的范围正在迅速深入与扩大。
本文处理数据所选择的方法是小波变换法。小波变换通过时间和频率的局部变换,来有效地通过信号提取更多信息。小波变换与傅里叶变换(Fourier变换)有一定的不同之处,它可对函数进行多角度的精细化分析,通过伸缩和平移等运算功能弥补Fourier变换难以解决的许多问题。小波分析在数学方面属于一个新的分支,是结合时间和分辨率进行分析的一种新技术,它结合了Fourier分析等多种分析方法在内的优点,可运用于多领域,并有着较为出色的表现和结果。信号分析则顾名思义,通过信号来找寻信号变换的简洁方便的操作方法,以显现出信号本身所包含与代表的各种信息,使信息获取更加便捷和可操作。小波分析是信号时频分析的一种,在未诞生小波分析之前,Fourier变换是当时最为代表性的用于信号处理领域的分析方法,以其应用广泛、效果优良著称。Fourier变换是时域到频域互相转化的工具,利用Fourier变换对信号进行频谱分析,能够较好地揭示了信号的时间频谱特性和特征属性。
小波是一种长度有限、平均值为0 的波形,它的特点包括:
(1)时域都具有紧支集或近似紧支集;
(2)直流分量为0.
一个母小波函数经过平移与尺寸伸缩得到小波函数,小波分析就是把信号分解成一系列小波函数的叠加。
1910年,数学家A.Haar提出的Haar系是由母函数好h(t)生成的,它是最早用到的、最简单的具有紧支集的正交小波函数。
h(t)={█(1,0≤t<1/2;@-1,1/2≤t≤1;@0,其他. )┤
其频域表形式为
h ̂(ω)=ie^(-i ω/2 (〖sin〗^2 (ω/4))/(ω/4)),
h ̂(ω)为h(t)的Fourier变换。
Haar小波是极其重要的正交函数,但用Haar小波对函数x(t)的逼近时,实际上是阶梯函数对连续函数的逼近。如果函数x(t)具有一定的光滑性,这样的逼近效果不是理想的。以上的原因的存在使得这个研究方向在沉寂了几十年后才重新得到人们的重视。
与传统的频率域变换(如傅里叶变换)相比,小波变换可以同时提供时间和频率信息。它可以分析不同频率的不同分辨率的信号。因此,提供了高频率的好频率分辨率和差频率分辨率,以及低频的好频率分辨率和低时间分辨率。因此,与时域信号和傅立叶变换产生的频域信号相比,小波变换产生的时域和频域信号信息量更大。小波变换是指把某一个基本小波函数ψ(t)平移τ后,再在不同尺度a下与待分析的信号x(t)做内积。
〖 f〗x (a,τ)=1/(√a) ∫(-∞)^∞▒〖X(t)ψ((t-τ)/a)dt,a>0〗
等效的时域表达式为
f_x (a,τ)=1/(√a) ∫_(-∞)^∞▒〖X(ω)ψ(aω) w^jω dt,a>0〗
式中,τ和a是里面的参数,τ和a分别表示使镜头相对于目标平行移动和向目标推进或远离。
从上述两个式子可以看出,在二维情况下,小波分析具有信号方向选择能力,它能够通过小波基函数的变换分析信号的局部特征,因此,该方法作为一种数学理论和分析方法,引起了广泛关注。

3框架理论的发展
任何一门学科的发展都不是孤立的。泛函分析是数学的一个古老分支。它是研究小波分析特别是框架理论方面问题的一个十分有力的工具。框架价理论是小波分析的一个重要研究内容,也是小波分析研究的重要数学工具之一。
1946年,D.Gabor在进行信号处理时,引入了一个信号关于基本信号的分解。D.Gabor当时的思想方法很快成为与时间-频率方法联系起来的谱分析的范例。例如,短时Fourier变换和Wigner变换。1952年,Duffin和Shaeffer在研究非调和Fourier分析时,进一步提炼了的思想方法,进入了更深的研究。同时,Paley和Wiener的基本结果激发他们解决了非调和Fourier分析研究中的许多问题,得到了一些新的结果。但是框架这个思想在当时并没有引起广泛的兴趣。
近些年来,算子理论和空间理论的许多有用的工具用于框架理论的研究,获得了许多重要的结果。D.R.Larson等人把算子代数理论运用到框架理论的研究中,使得框架理论研究更上了一个层次,开辟了一个新的局面,从整体上把握和研究了框架和基的性质。

4 框架多分辨分析
多分辨分析方法(MRA)是构造小波的重要方法之一。它是小波分析研究的重要内容,J.J.Benedetto和S.Li提出了框架多分辨分析(FMRA)理论,类似于MRA,FMRA是构造小波紧框架的重要工具。FMRA与MRA的本质区别在于MRA要求尺度函数平移构成其闭线性张成子空间V_0的Riesz基或正交基,而FMRA可以不要求这一条。
4.1 多分辨分析及其Mallat算法
定义4.1空间L^2 ®中一列闭子空间{V_j }(j∈z)称为L^2 ®的一个多分辨分析(记为MRA),如果该序列满足下列条件:
(1)单调性: ⋯⊆V
(j+1)⊆V_j⊆V_(j-1)⊆⋯,∀j∈Z;
(2)逼近性: (⋃_(j∈z)▒V_j ) ̅=L^2 ®,⋃_(j∈z)▒〖V_j={0} 〗;
(3)伸缩性: f(t)∈V_j当且仅当f(2t)∈V_(j-1);
(4)平移不变性: f(t)∈V_0⇒T_k f∈V_0,对所有k∈Z,这里T_k f=f(t-k);
(5)Riesz基存在性: ∃ϕ∈V_0,{T_k ϕ:k∈Z}是子空间V_0的Riesz基。
4.1.1两尺度方程
如果我们定义小波基函数ψ_(m,n) (t)=2^(-m/2) ψ(2^(-m) t-n),由多分辨分析知:V_0⊕W_0=V_(-1),V_0⊂V_(-1,) W_0⊂V_(-1,)所以φ(t)和ψ(t)属于V_(-1)空间,可用其空间的正交基线性展开,表示为
φ(t)=∑_n▒〖h_0 (n)φ_(-1,n) (t)〗=√2∑_n▒〖h_0 (n)φ(2t-n)〗
ψ(t)=∑_n▒〖h_1 (n)φ_(-1,n) (t)〗=√2∑_n▒〖h_1 (n)φ(2t-n)〗(3.1.1)
在二尺度关系,存在于任意相邻尺度j,j-1之间,且展开系数h_0 (n)和h_1 (n)不随尺度的变化而变化。令
H_0 (ω)=1/(√2) ∑_n▒〖h_0 (n)e^(-jωn) 〗
H_1 (ω)=1/(√2) ∑_n▒〖h_1 (n)e^(-jωn) 〗
对式(3.1.1)两边作傅里叶变换,易得
H_0 (ω)=φ(2ω)/φ(ω)
H_1 (ω)=ψ(2ω)/φ(ω)
4.1.2系数分解的快速算法
对任意f(t)∈V_(j-1),将其投影到V_j和W_j空间,得:

f(t)=∑_n▒〖c_(j,k) 2^(-j/2) φ(2^(-j) t-k)+∑_n▒〖d_(j,k) 2^(-j/2) ψ(2^(-j) t-k) 〗〗
其中c_(j,k)=<f(t),φ_(j,k) (t)>,d_(j,k)=<f(t),ψ_(j,k) (t)>
c_(j,k)称为剩余系数,d_(j,k)称为小波系数。
由式(4.1.1)得
φ(2^(-j) t-k)=√2∑_n▒〖h_0 (n)φ[2(2^(-j) t-k)-n] 〗=√2∑_n▒〖h_0 (n)φ(2^(-j+1) t-2k-2n)〗

∫_R▒〖f(t)2^((-j+1)/2) (φ(2^(-j+1) t-m)) ̅ 〗 dt=c_(j-1,m)
同理
d_(j,k)=∑_m▒〖h_1 (m-2k)c_(j-1,m) 〗
将V_j空间剩余系数c_(j,k)继续分解,得V_(j+1)空间的剩余系数c_(j+1,k)和W_(j+1)空间的小波系数d_(j+1,k)
c_(j+1,k)=∑_m▒〖h_0 (m-2k)c_(j,m) 〗
d_(j+1,k)=∑_m▒〖h_1 (m-2k)c_(j,m) 〗
这种分解可以继续下去,可得任意尺度空间,上面两个式子给出了小波的一种快速算法,即著名的Mallat算法。
我们也很容易得到小波变化系数的重建公式
c_(j-1,m)=∑_k▒〖〖c_(j,k) h〗0 (m-2k)+∑_k▒〖〖d(j,k) h〗1 (m-2k) 〗〗
4.2 框架多分辨分析
定义4.2称{V_j,ϕ}是L^2 ®一个框架多分辨分析(记为FMRA),如果每一个{V_j }是L^2 ®的闭子空间并且ϕ∈V_0满足下列条件:
(1)⋯⊂V_2⊂V_1⊂V_0⊂⋯;
(2) (⋃_j▒V_j ) ̅=L^2 ®,⋂_j▒〖V_j={0} 〗;
(3)f(t)∈V_j当且仅当 f(2t)∈V
(j-1);
(4)f(t)∈V_0⇒T_k f∈V_0,对所有的k∈Z,这里T_k (f)=f(t-k);
(5){T_k ϕ:k∈Z}是子空间V_0的一个框架。
若{T_k ϕ:k∈Z}是子空间V_0的一个Riesz基,则FMRA就是传统的MRA,显然FMRA是比MRA更为一般的一个概念。
引理4.2.1设{V_j,ϕ}是一个框架多分辨分析,W_0是V_0是V_1中的正交补,H_0是尺度方程
ϕ ̂(γ)=1/√2 H_0 (γ/2)ϕ ̂(γ/2)
的一个解,则存在ψ∈W_0使得{T_k ψ}生成W_0的充要条件是存在H_1∈L^∞ (T)和G_0,G_1∈L^∞ (T)满足下列条件:
〖 H〗_0 (γ)ϕ(γ) G_0 (γ)+H_1 (γ)ϕ(γ) G_1 (γ)=2ϕ(γ) a.e,
〖 H〗_0 (γ+1/2)ϕ(γ+1/2) G_0 (γ)+H_1 (γ+1/2)ϕ(γ+1/2) G_1 (γ)=0 a.e.
在这种情况下,有
ϕ ̂(γ)=1/√2 H_1 (γ/2)ϕ ̂(γ/2)
引理4.2.2设{T_k ϕ}是V_0=(span) ̅{T_n ϕ}的一个框架,S是框架算子,函数θ通过它的Fourier变换可以定义为θ ̂(γ)={█((θ ̂(γ))/ϕ(γ) ,ϕ(γ)≠0@0, ϕ(γ)=0)┤,且θ=S^(-1) ϕ。

5框架多分辨分析在信号处理中的应用
用框架多分辨分析对信号进行分解和重构需要采样预前处理,子带处理和插值(预后处理),下面针对具体信号看一下框架多分辨分析处理信号的步骤。我们假定有一个满足引理4.2.1的框架多分辨分析。
5.1对无线信号的处理过程
设f∈L^2 ®,且假定ε>0,则存在j=j_ε和一个函数g∈V_j使得
‖f-g‖(L^2 ®)<ε

g=∑_k▒〖<g,ϕ_jk>θ_jk 〗
其中,{θ_jk=2^(-j/2) θ(2^(-j) t-k):k∈Z}是{ϕ_jk=2^(-j/2) ϕ(2^(-j) t-k):k∈Z}在V_j中的对偶框架,θ是按引理4.2.2构造的。
对于f∈L^2 ®和j,我们的处理过程为:
第一步:预处理,即计算下式的值:
∀k,c_j (k)=<f,ϕ_jk>=2^(-j/2) ∫▒〖f ̂(2^(-j) γ)(ϕ ̂(γ) ) ̅e^2πjkγ 〗 dγ
这一步 目的是计算出f所对应的一个序列。
第二步:子带处理过程,包括分解和重构过程。
(a)分解
c_j=<f,ϕ
(j,k)>=∑_n▒〖(h_0 (n-2k) ) ̅c_(j-1) (n)〗,
d_j=<f,ψ_(j,k)>=∑_n▒〖(h_1 (n-2k) ) ̅c_j (n)〗
(b)重构
c_(j-1) (n)=∑_k▒〖(g_0 (2k-n) ) ̅c_j (k)+∑_k▒〖(g_1 (2k-n) ) ̅d_j (k)〗〗

第三步:后处理,计算
f ̃=∑_n▒〖c_j (k)θ_jk∈V_j 〗
很容易证明 ‖f-g‖(L^2 ®)<ε,其中ε>0是允许的逼近误差,这种通过f ̃逼近 f的方法和多分辨分析类似。
更进一步,如果f∈V_j,则f=f ̃。
5.2 对离散信号的处理
设{S_n }是离散的能量有限信号,不失一般性,假定S_n=f(n)是由f∈L^2 ®采样得到的&

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值