- 博客(30)
- 资源 (8)
- 收藏
- 关注
原创 Apache Jmeter 安装教程(实测有效)
首先下载安装Java,地址为:http://www.oracle.com/technetwork/java/javase/downloads/index.html根据需求进行选择。将其剪切保存到D:\Program Files\Java,后期需要配置变量。然后双击启动安装,点击是然后一直继续直到安装完毕。首先打开地址:http://jmeter.apache.org/download_jmeter.cgi下载这个资源包,然后解压,配置环境。在左下角输入“环境变量”然后搜索。①.新增变量名:【CL
2022-06-07 20:14:08 1781 1
原创 fidder classic 界面介绍
界面划分开始抓包(1)默认情况下都是开启的,点击下图可以关闭或开启抓包。(2)点击“file”----“capture traffic”也可以开始抓包菜单栏重要的菜单栏reset script 重置你修改的脚本;在rules里,如调整过网络速度,你可以进行重置。option 重要性不言而喻,有许多重要的设置,如HTTPS,Connections等。clear chace 清除winet chace。...
2022-05-27 19:43:30 303
原创 Fiddler Classic 如何安装证书,抓取https报文?(是你忽略了一些细节,看了后必定成功)
1.从官网下载fiddler classic(免费)网址:https://www.telerik.com/fiddler如下图操作:2.安装fiddler classic(1)直接双击打开,安装仅需两步;点击 I Agree(2)将C盘改为D盘,其他保持不变,点击"Install"(3)安装完毕,点击close3.下载fiddler证书地址:http://www.telerik.com/docs/default-source/fiddler/addons/fiddlercert
2022-05-27 16:55:08 1437
原创 fiddler 不同版本功能说明
fiddler everywhere适用于 MacOS、Windows 和 Linux 的 Web 调试代理适用于MacOS,Windows和Linux的最强大的Web调试代理工具,具有增强的UI。通过内置的团队协作有效地共享您的发现并添加上下文。 自定义、保存和共享规则,轻松处理复杂的请求。无限制地共享已保存的会话和请求,以提高效率,并获得专门的电子邮件支持以保持正轨。调试功能在 Fiddler Everywhere中得到了增强,使您可以毫不费力地将调试和测试提升到一个新的水平。fiddl
2022-05-26 14:21:24 5158
原创 matlab深度学习基本操作,深度学习讲解,源代码分享,用一用改一改随便发篇EI
神经网络工具箱™提供了算法、预训练模型和应用程序来创建、训练、可视化和模拟浅层和深层神经网络。您可以执行分类、回归、聚类、降维、时间序列预测以及动态系统建模和控制。深度学习网络包括卷积神经网络(ConvNets, CNNs)、有向无环图(DAG)网络拓扑,以及用于图像分类、回归和特征学习的自动编码器。对于时间序列分类和回归,工具箱提供了长期短期记忆(LSTM)深度学习网络。您可以可视化中间层和激活,修改网络架构,并监控培训进度。对于小的训练集,您可以通过使用预先训练的深度网络模型(包括Inception
2021-07-09 19:20:35 3614 2
原创 Python list、元组和字典区别一览
函数 list鉴于不能像修改列表那样修改字符串,因此在有些情况下使用字符串来创建列表很有帮助。 为此,可使用函数listlist(‘Hello’) [‘H’, ‘e’, ‘l’, ‘l’, ‘o’] 请注意,可将任何序列(而不仅仅是字符串)作为list的参数。修改列表:给元素赋值 修改列表很容易,只需使用第1章介绍的普通赋值语句即可,但不是使用类似于x = 2这样的 赋值语句,而是使用索引表示法给特定位置的元素赋值,如x[1] = 2。x = [1, 1, 1]x[1] =
2021-06-30 19:54:18 129
原创 刀具寿命预测特征处理方法、刀具磨损机理
文章思路第一章:研究目的、意义及现在研究的状态。第二章:刀具磨损机理和实验设计。第三章:刀具状态监测和信号处理与特征提取。第四章:刀具状态监测的特征选择。第五章:不完备先验知识的刀具磨损状态评估。第六章:基于粒子群算法的刀具磨损量识别。第七章:刀具寿命预测和优化。刀具磨损机理刀具的前刀面、后刀面不断与切屑、工件发生强烈的摩擦,使得刀具在高温高压下与工件材料之间形成黏结与扩散等相互作用,导致其表面氧化层或其他吸附层,在切削过程中会被逐渐擦去,形成刀具磨损。正常磨损:前刀面磨损、后刀面磨损、
2021-06-22 15:15:27 2123
原创 刀具寿命预测研究方法
博士论文2009级车铣刀具磨损状态监测及预测关键技术研究研究意义影响加工广品的尺寸精度和表面质量;可能损坏工件、保持架或机床;直接影响机器的停机时间和非预期停机,影响生产效率。刀具失效所造成的停机时间是整个加工中心的20%。国内外的统计资料和专家估计表明,机床配备刀具状态监测系统后,可以避免约75%的由于人和其他技术问题引起的故障停机时间;有效利用加工时间,使其利用率达到总时间的65%左右,是现有利用率的数倍至十余倍;总的来说,刀具状态监测技术的目的和意义体现在如下几个方面:实时监测刀具状
2021-06-21 20:06:01 2558
原创 Code Generation for Deep Learning Networks;深度学习神经网络matlab 代码
%% Code Generation for Deep Learning Networks%% This example shows how to perform code generation for an image% classification application that uses deep learning. It uses the |codegen|% command to generate a MEX function that runs prediction by using
2021-06-17 21:33:28 438
原创 特征提取之关联维数(GP)matlab代码
%for i=2:8y=ct(:,5);[y,wptDEN] = func_denoise_wp1d(y);x3=y;zs=size(x3,1);%大小确定y=abs(fft(y,zs));%真实的幅值t1=[1:1:zs];%生成序列t2=t1;m=4;hhhh=fix(zs/500)%确定分段系数,分为多少段,每段500个数据;for ih=1:hhhh;n=0;N=0;j=0;i=0;a=0;b=0;pd=0;rr=0;CC=0;%改进的GP算法求关联维数(注:先导入时间序列数
2021-06-17 17:02:37 3846 3
原创 常用数据特征提取,时域特征、频域特征、小波特征提取汇总;特征提取;有效matlab代码
clc;clear%% 导入数据load(‘ct.mat’)Fs=12800;a=[];c=[];w=[];%% 1时域特征提取for i=2:8y=ct(:,i);a(1,i) = max(y); %最大值a(2,i)= min(y); %最小值a(3,i) = mean(y); %平均值ma=a(1,i) ;mi=a(2,i);a(4,i) = ma-mi; %峰-峰值a(5,i) = mean(abs(y)); %绝对值的平均值(整流平均值)a(6,
2021-06-17 15:49:56 19414 41
原创 刀具磨损类论文观后总结
1.车铣刀具磨损状态监测及预测关键技术研究_李威霖这篇论文对于后期的算法研究具有重要的价值,但是再前期实验和排布方面暂时没有太多用处。基于 HHT 和 IPSO 算法优化 RBF 神经网络的滚刀磨损状态识别方法就论文格式和排版来说,该论文具有一定的价值,可以模仿该论文的模式进行小论文的撰写。算法和实验都非常的普通,甚至不够详细,甚至自相矛盾。基于扩展隐马尔可夫模型的刀具磨损识别与寿命预测研究该论文为华中科大硕士论文,主要撰写内容为数据采集及处理;刀具磨损在线识别;寿命状态监测;最后开发了一
2021-01-03 09:52:12 1032
原创 降噪算法如何评定效果?用标准的方法,科学合理的判定你的降噪算法效果。
本节通过正弦信号、“Doppler”信号、“Blocks”信号说明本方法的有效性,在仿真信号中加入不同的噪声以模拟不同输入信噪比( SNRin) 的含噪信号。降噪效果与目前应用广泛的 EEMD 结合相关系数的降噪方法[11]( 相关系数法) 以及小波软阈值降噪法( 小波阈值法) 进行对比。并采用降噪后的信噪比 ( SNRout) 和均方根误差( root mean square error,RMSE) 作为评价降噪效果的标准,需要强调的是: SNRout值越大说明降噪效果越好; 与之相反 RMSE 值越小说
2021-01-03 09:42:52 7935 1
原创 滚齿刀失效形式,如何判定滚齿刀失效?
滚齿刀失效形式高速干式滚切16MnCr5中的滚刀磨损研究_王新堂在切削过程中,刀齿在高压下,使刀齿与工件和切屑间产生机械磨擦,同时在高压下又产生的高温,使刀具材料变软硬度降低,产生“热磨损”,随着温度的继续升高,刀具硬度也随着降低,进而产生机械磨损,使刀具失去切削的能力齿轮滚刀在使用时形成的磨损如图 2.1,破损的失效形态一般分为崩刃和打刀。滚刀的磨损分为月牙洼磨损、崩刃、刃口钝化、后刀面磨损,严重后刀面磨损(磨穿),如图 2.1 所示。上述的滚刀失效,只能说是典型的磨损,在这里把滚刀的失效分得更
2021-01-03 09:38:17 920
原创 加工振动消除方法
[1]杨守帅.刀具的振动与消除措施研究[J].河南科技,2019(10):31-34.振动的危害主要包括以下4种:①振动会降低工件加工精度,增大表面粗糙度,使工件表面出现振纹;②振动会加剧刀具的磨损,降低刀具寿命,而长期振动会加速设备的老化;③振动会产生噪声,尤其高频啸叫,对操作工人危害大,其噪音成为公害;④由于种种原因引起强烈振动,可使加工无法进行,甚至导致零部件加工报废。消除振动的措施3.1减小切削力3.1.1选用锋利的刀具。刀片按种类分为涂层刀片和非涂层刀片。涂层刀片分为 PVD(物理涂
2020-12-28 20:41:23 513
原创 车削加工参数优化切削参数 ( 切削速度、进给量、背吃刀量) 对表面粗糙度的影响
车削加工参数优化[1]付钰,赵秀栩,魏俊华,陈鹏,李娇.切削参数对车削20CrMnTi表面粗糙度的影响及优化研究[J].机床与液压,2020,48(22):50-53+90.以车削20CrMnTi 钢的表面粗糙度为研究对象,设计正交试验,在数控车床 GENOS-L250E 上进行硬质合金刀具车削试验,探究切削参数 ( 切削速度、进给量、背吃刀量) 对表面粗糙度的影响。并通过多元回归建立切削参数与表面粗糙度的关系模型,从而构建以加工效率、表面粗糙度为目标的多目标优化模型,通过粒子群算法对切削参数进行优化。
2020-12-24 20:08:02 11892 1
原创 神经网络显示误差表面的模式关联
显示误差表面的模式关联一个线性神经元的目的是对特定的输入和目标输出做出反应。X定义两个1-元素输入(列向量)。T定义相关的1-元素目标(列向量)。X = [1.0 -1.2];T = [0.5 1.0];w_range = -1:0.1:1;b_range = -1:0.1:1;ES = errsurf(X,T,w_range,b_range,‘purelin’);plotes(w_range,b_range,ES);ERRSURF计算y神经元的误差范围,可能的权重和偏置值。PLOTES将
2020-06-11 07:35:48 327
原创 一维及二维自组织神经网络拟合
One-Dimensional Self-organizing Map(线性拟合)2-D层中的神经元可以表示输入向量发生的输入空间的不同区域。此外,相邻的神经元可以对类似的输入进行反应,从而了解所呈现的输入空间的拓扑。下面是一维神经元的建模。例:angles = 0:0.5pi/99:0.5pi;X = [sin(angles); cos(angles)];plot(X(1,:),X(2,:),’+r’)net = selforgmap(10);%建立一个10神经元的自组织竞争神经网络net
2020-06-11 07:33:02 547
原创 matlab画图指令bar详解
bar条形图,用法多种多样;y = [75 91 105 123.5 131 150 179 203 226 249 281.5];bar(y)x = 1900:10:2000;y = [75 91 105 123.5 131 150 179 203 226 249 281.5];bar(x,y)y = [75 91 105 123.5 131 150 179 203 226 249 281.5];bar(y,0.4)%占可以使用空间的40%y = [2 2 3; 2 5 6; 2 8
2020-06-11 07:28:59 7502
原创 matlab动态建模与预测(磁悬浮)
在这个例子中,我们尝试建立一个神经网络,可以预测磁铁使用控制电流悬浮的动态行为。该系统的特点是磁体的位置和控制电流,这两种方法都决定了磁体在什么时候会在哪里。这是一个时间序列问题的例子,在这里,反馈时间序列(磁位)和外部输入系列(控制电流)的过去值被用来预测反馈系列的未来值。程序及分析:[x,t] = maglev_dataset;%导入数据net = narxnet(1:2,1:2,10);%建立非线性自回归神经网络view(net)%查看神经网络结构两层(即单层)NARX神经网络可以适应
2020-06-10 05:40:33 1601 1
原创 自组织竞争神经网络Gene Expression Analysis
程序如下:load yeastdata.mat%6400个数据,数据集相当大,许多信息对应于在实验中没有显示任何有趣变化的基因。为了更容易地找到有趣的基因,首先要做的是通过去除那些没有任何兴趣的表达资料来减少数据的大小。有6400个表达资料。你可以使用一些技术来将其减少到包含最重要基因的子集。emptySpots = strcmp(‘EMPTY’,genes);% strcmp函数,并从数据集中删除索引命令yeastvalues(emptySpots,:) = [];genes(emptySpot
2020-06-10 05:37:48 435
原创 自组织竞争神经网络案例(虹膜花)
自组织竞争神经网络案例(虹膜花)自组织地图(SOMs)非常擅长创建分类。此外,分类还保留了哪些类最类似于其他类的拓扑信息。自组织映射可以用任何需要的细节来创建。它们特别适合于许多维度的聚类数据,以及复杂的形状和连通的特征空间。它们很适合分类识别虹膜花。四个花的属性将作为SOM的输入,它将映射到一个二维的神经元层。程序如下:x = iris_dataset;%首先导入数据;net = selforgmap([8 8]);view(net)selforgmap通过在层的每个维度中选择神经元的数量
2020-06-10 05:35:54 731 1
原创 matlab Neural Network Time Series Tool
Neural Network Time Series Tool训练时仅需要目标数据即可。这种模型可以用来预测股票或债券的未来价值,基于这些经济变量,如失业率、GDP等。它也可以用于系统识别,在这些模型中,模型被开发出来代表动态系统,如化学过程、制造系统、机器人、航天汽车等。首先选择time series App我们可以看到里面有三种类型的神经元模式,第一种可以应用于股票预测,可以在输出中看到他们的表达形式,第一种有输入和输出共同影响输出;第二中仅有输出;第三种仅有输入影响输出。选择第一种进行讲解
2020-06-10 05:32:51 4369 6
原创 Self-Organizing Map(自组织竞争型神经网络)
操作与其他的nnstart App基本一致;点击clustering,next区别,主要是只需要输入;将输入的数据导入后点击next;然后设置神经元个数,next;点击train同样可以生成相应的源代码,不再赘述;主要进行plots分析;SOM simple hitsSOM的默认拓扑是六边形。这个数字显示了拓扑中的神经元位置,并指出了多少训练数据与每个神经元(集群中心)相关联。拓扑是一个10×10的网格,所以有100个神经元。神经元之间的最大碰撞次数是34。因此,在这个集群中有34个输入向量
2020-06-10 05:29:43 1833
原创 五分钟实现神经网络GUI模式识别
pattern recognization(模式识别)基本内容与neural network fitting tool一致;选择pattern recognize APP,next,next;导入所需要的数据,在input和output里面,本文使用系统自带案例;点击next,调整参数,直到训练;点击训练,依然相同;主要是nntraintool有所不同confusion绿色区表示正确的参数量和比例,红色区表示错误的参数量和比例,蓝色区表示总和;依然分为training、validation、
2020-06-10 05:26:07 709
原创 matlab神经网络训练结果常用评价指标
(1)Regression下面的回归图显示了网络输出对培训、验证和测试集的目标。为了完美的配合,数据应该沿着45度的线下降,网络输出等于目标。对于这个问题,fit对所有数据集都有一定的好处,在每一个情况下,R值在0.93或以上。如果需要更准确的结果,您可以通过在nftools中单击retrain来重新训练网络。这将改变网络的初始权重和偏差,并可能在重新培训后产生一个改进的网络。其他选项在以下窗格中提供。(2)Error histogram蓝色棒代表训练数据,绿色棒代表验证数据,红色条表示测试数据。直方
2020-06-10 05:21:10 16868 8
原创 一分钟了解如何使用matlab如何对函数图进行处理添加标题和坐标标签、线型和线宽设置以及不同坐标尺度一图同列
目标图片如下:%生成解析式,第一幅图x = linspace(0,6,25);y1 = sin(x/3);y2 = sin(x-pi/4);y3=sin(x);%画图figuresubplot(121);%产生两幅图像容纳空间;plot(x,y1,’–go’,x,y2,’:r*’,x,y3,’-.bs’)%画图同时确定线形、颜色和点的形状;legend(‘y = sin(x/3)’,‘y2 = sin(x-pi/4)’,‘y3=sin(x)’)%生成注解title(‘Graph of
2020-06-10 05:17:09 878
原创 matlab神经网络Narxnet非线性自回归神经网络
Narxnet:非线性自回归神经网络;用法:narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)inputDelays 输入延时Row vector of increasing 0 or positive delays (default = 1:2)feedbackDelays 输出延时Row vector of increasing 0 or positive delays (default = 1:2)hiddenSizes 隐藏层
2020-06-07 01:41:16 6399 3
原创 我才发现configure指令在matlab神经网络中有着重要的作用!
Configure:配置网络输入和输出,以达到最好的匹配输入和目标数据。使用这个质量可以减少训练次数,减少训练时间。用法:net = configure(net,x,t)net = configure(net,x)net = configure(net,‘inputs’,x,i)net = configure(net,‘outputs’,t,i)例:[x,t] = simplefit_dataset;net = feedforwardnet(20); view(net)%此时没有输入和输出;
2020-06-07 01:35:43 2223
原创 matlab神经网络入门不是很简单吗?
matlab神经网络入门不是很简单吗?废话不多说,直接例子。例:x = [0 1 2 3 4 5 6 7 8];t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];%初始数据输入和输出;plot(x,t,‘o’)net = feedforwardnet(10);%前馈型神经网络net = configure(net,x,t);% 配置网络输入和输出,以达到最好的匹配输入和目标数据.y1 = net(x)plot(x,t,‘o’,x,y1
2020-06-07 01:28:27 528
刀具寿命预测相关论文.zip
2020-10-10
深度学习与多信号融合在铣刀磨损状态识别中的研究_穆殿方.caj
2020-10-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人