隐马尔可夫模型(HMM)是一种统计模型,用来描述一个含有隐含未知参数的马尔可夫过程。在HMM中,系统被认为是一个马尔可夫链在不同状态之间随机转换,但每次状态转换的结果不能直接观察到,只能通过一些可观察到的输出数据间接推测。HMM广泛应用于语音识别、自然语言处理、生物信息学等领域。
参考文档:Python 机器学习 HMM算法 马尔科夫链-CJavaPy
1、马尔科夫链简介
马尔科夫链是一种随机过程,其下一状态只依赖于当前状态,与之前的状态无关。尔科夫链是一种数学系统,它经历从一个状态到另一个状态的转换,其特点是下一个状态的选择仅依赖于当前状态,而与之前的状态无关。这种特性称为无记忆性或马尔科夫性质。马尔科夫链是一种数学模型,用于描述从一个状态到另一个状态的转换过程,这些转换具有“无记忆”的性质,即未来的状态仅依赖于当前状态,与过去的状态无关。马尔科夫链通常用于描述明确、可观测的状态序列的生成过程。简单来说,马尔科夫链是状态序列的生成模型,其中每个状态都是直接可观测的,且转换概率是已知的。
import numpy as np # 定义状态空间 states = ["A", "B", "C"] # 定义状态转移概率矩阵 transmat = np.array([[0.5, 0.3, 0.2], [0.2, 0.5, 0.3], [0.1, 0.4, 0.5]]) # 定义初始状态概率 startprob = np.array([0.6