Python 机器学习 HMM算法 马尔科夫链

本文介绍了隐马尔可夫模型(HMM),它是马尔科夫链的扩展,用于处理状态不直接可观测但可通过观察值推断的问题。文章详细解释了HMM的原理,展示了如何在语音识别、自然语言处理和生物信息学中的应用,并通过实例演示了马尔科夫链的基本概念和在天气预测和股市模拟中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

隐马尔可夫模型(HMM)是一种统计模型,用来描述一个含有隐含未知参数的马尔可夫过程。在HMM中,系统被认为是一个马尔可夫链在不同状态之间随机转换,但每次状态转换的结果不能直接观察到,只能通过一些可观察到的输出数据间接推测。HMM广泛应用于语音识别、自然语言处理、生物信息学等领域。

参考文档:Python 机器学习 HMM算法 马尔科夫链-CJavaPy

1、马尔科夫链简介

马尔科夫链是一种随机过程,其下一状态只依赖于当前状态,与之前的状态无关。尔科夫链是一种数学系统,它经历从一个状态到另一个状态的转换,其特点是下一个状态的选择仅依赖于当前状态,而与之前的状态无关。这种特性称为无记忆性或马尔科夫性质。马尔科夫链是一种数学模型,用于描述从一个状态到另一个状态的转换过程,这些转换具有“无记忆”的性质,即未来的状态仅依赖于当前状态,与过去的状态无关。马尔科夫链通常用于描述明确、可观测的状态序列的生成过程。简单来说,马尔科夫链是状态序列的生成模型,其中每个状态都是直接可观测的,且转换概率是已知的。

import numpy as np

# 定义状态空间
states = ["A", "B", "C"]

# 定义状态转移概率矩阵
transmat = np.array([[0.5, 0.3, 0.2],
                            [0.2, 0.5, 0.3],
                            [0.1, 0.4, 0.5]])

# 定义初始状态概率
startprob = np.array([0.6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值