Task03特征工程

特征工程

跟着直播课走一遍练习了,最近事情可太多了T_T
首先利用箱线图来清洗异常值。代码如下所示:

def outliers_proc(data,col_name,scale=3):
    # 用于清洗异常值,默认用box_plot(scale=3)进行清洗
    # param data:接收pandas数据格式
    # param col_name:pandas列名
    # param scale:尺度
    def box_plot_outliers(data_ser,box_scale):
        # 利用箱线图去除异常值
        # param data_ser:接收pandas.Series数据格式
        # param box_scale:箱线图尺度
        iqr = box_scale * (data_ser.quantile(0.75)-data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser<val_low)
        rule_up = (data_ser>val_up)
        return (rule_low,rule_up),(val_low,val_up)
    
    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series,box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0]|rule[1]]
    print("Delete number is:{}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True,inplace=True)
    print("Now column number is:{}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1,2,figsize=(10,7))
    sns.boxplot(y=data[col_name],data=data,palette='Set1',ax=ax[0])
    sns.boxplot(y=data_n[col_name],data=data_n,palette='Set1',ax=ax[1])
    return data_n

将异常数据进行删除,这里以power为例,但注意,在测试集中是不能删除数据的。

Train_data = outliers_proc(Train_data,'power',scale=3)

在这里插入图片描述
特征构造时,将训练集和测试集放在一起,方便构造特征。

Train_data['train'] = 1
TestA_data['train'] = 0
data = pd.concat([Train_data,TestA_data],ignore_index=True,sort=False)
print(data['creatDate'].isnull().sum())
print(data['regDate'].isnull().sum())

使用时间:data[‘creatDate’]-data[‘regDate’],反应汽车使用时间,一般来说价格与使用时间成反比。注意,数据里有时间出错的格式,所以我们需要errors=‘coerce’。

data['used_time'] = (pd.to_datetime(data['creatDate'],format='%Y%m%d',errors='coerce')-
                    pd.to_datetime(data['regDate'],format='%Y%m%d',errors='coerce')).dt.days

查看空数据

data['used_time'].isnull().sum()
# output
15072

结果显示有15072个样本为空,但缺失数据的样本数仅占样本总量的7.5%,所以不建议删除。并且XGBoost以及LightGBM之类的决策树是能够处理缺失值的。

从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识。

data['city'] = data['regionCode'].apply(lambda x: str(x)[:-3])

计算某品牌的销售统计量,还可以计算其他特征的统计量。这里要以 Train_data 的数据计算统计量。

train_gb = Train_data.groupby('brand')
all_info = {}
for kind, kind_data in train_gb:
    info = {}
    kind_data = kind_data[kind_data['price']>0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data)+1),2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index":"brand"})
data = data.merge(brand_fe,how='left',on='brand')

数据分桶。以power为例,这时候缺失值也进桶了。

bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'],bin,labels=False)
data[['power_bin','power']].head()

在这里插入图片描述
为什么要做数据分桶呢?
1.离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展。
2.离散后的特征对异常值更具鲁棒性,如age>30为1 否则为0,对于年龄为200的也不会对模型造成很大的干扰。
3.LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的拟合能力,加大拟合。
4.离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线性,提升了表达能力。
5.特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化。
还有很多原因,LightGBM在改进XGBoost时就增加了数据分桶,增强了模型的泛化性。

之后删除掉原始数据,处理后的数据就可以拿来进行训练了。

data = data.drop(['creatDate','regDate','regionCode'],axis=1)
print(data.shape)
data.columns

特征工程(Feature Engineering):将数据转换为能更好地表示潜在问题的特征,从而提高机器学习性能。

  1. 数据理解
  2. 数据清洗
  3. 特征构造
  4. 特征选择
  5. 类别不平衡

数据理解:目的是探索数据,了解数据,主要在EDA阶段完成
数据清洗:目的是提高数据质量,降低算法用错误数据建模的风险。
特征构造:增强数据表达,添加先验知识。
特征选择:降低噪声,平滑预测能力和计算复杂度,增强模型预测性能。
类别不平衡:少类别提供信息太少,没有学会判别少数类。

智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值