攻防无界 安全沙龙

企业红蓝对抗体系建设 by lake2

TEG下有安全平台部。另一个BG下有玄武、科恩、云鼎三个安全实验室。
把安全嵌入到开发流程中。比如build会触发代码审计,发布到测试机上会触发安全测试,等等。
快手和腾讯都有自己的红蓝军。
DDoS可以分为资源消耗型和流量阻塞型。
“泛蓝军”其实就是众测,寻求社会白帽子的智慧。一个例子是腾讯TSRC。
需要重视平台建设,将个人能力和经验沉淀为平台策略,实现自动化检验。(员工会有流动,平台不会。自动化的效率肯定更高。而且可以对外提供安全服务。)
蓝军的职能:

  • 系统(渗透测试、漏洞挖掘、APT)
  • 物理安全和物联网安全(复制卡,窃听窃视,智能音箱、智能楼宇(用无人机开灯开窗帘))
  • 业务(薅、刷、挂,比如下面的短视频业务安全,此外也可看我另一篇博客《风控部门是做什么的》)
  • 网络(DDoS、链路劫持)
  • 维护和组织泛蓝军活动
  • 支援(安全情报、漏洞研究、武器库研发、技术复盘)
    一般的渗透流程,外网-办公网-idc。

短视频业务安全 by 陈成

陈成是快手业务安全一把手,中科院博士。这跟我对52pojie上一些民科的印象有些不同。自动化判断黑产,需要很多创新,也有很多挑战(比如图挖掘,机器学习的应用)。安全领域对抗性极强,所以机器学习的应用更加困难。比如视频录下键盘上输入网址的过程,或者通过“妹。B。好难过。”这种很难机器分析的文本。

黑产盘点

资源类:

  • 虚拟运营商,开大量sim卡(黑卡)
  • 集合宽带、基站IP等动态IP(黑名单外的代理IP)
  • 伪造虚假设备指纹(改机)、购买IMEI白库
  • 个人身份(身份证号)和企业资质资料买卖
    服务类:
  • 打码平台,比如让“兼职”大学生肉眼识别验证码
  • 发卡,隐蔽交易,最经典的就是vi pi en充值
  • 接码平台,代收发验证码
  • 群控,提供多设备批量执行功能(比如市面上的一些安卓模拟器)
    变现类:
  • 恶意引流
  • 广告联盟作弊
  • 网络诈骗

从肉鸡到真鸡

这一趋势来自近年被广大百姓熟知的的互联网的资本运作模式(先补贴抢占市场)。作弊者可能是“兼职”大学生,或者隔壁加了“薅羊毛群”的大爷大妈。产生了专门的网赚/兼职/羊毛APP,由真人操作真机进行作弊。
黑产如改机、分身、群控(比如,拉新用户直接给现金),
灰产如互助、众包(比如,加群互相关注点赞,互相砍一刀,真人粉丝,真人评论,真人播放)

恶意引流

新兴作弊。毕竟流量离真金白银只有一步。
黑产如垃圾内容(比如带有emoji的网址),灰产如立人设诈骗(假靳东)

风控的度很难掌握

误报:管太多可能会误杀,接到黑猫投诉,工商局投诉,或者客服挨骂。毕竟用户都是活人。为了不影响体验,可能会采取专门警告信息、延迟发放奖励等措施,需要具体分析。
漏报:“上帝,你为什么没有保护我”:拦下来的成绩没被看见,漏报一个就很难做

平台化

因为黑产的变化非常快,按传统流程排期开发的话往往来不及。应尽量提供“一键上线”。

安全情报

比如,潜入一些薅羊毛qq群、微信群、telegram群。从外部发现业务风险。

IoT平台安全体系建设

洗碗机、保险柜等产品样机很重。
技术复杂,硬件、软件、安全都要懂,招人难,只能进一步细分岗位。
需要研究各国法律,AIoT一不小心可能就要吃罚款。
产品品类太多,一样样测过来,本来该精英化的实验室变成了流水线。
老人走了,新人来了,继续做同样的事情,犯同样的错误,这是不应该的。总应该上一个台阶的。
把IoT产品的各个组成要素都拆解出来,逐项扫描。(有点360安全卫士体检的味道了,把计算机的健康从各个组成要素来评估。)
攻击是分步骤的,每一步成功都需要一些条件,如果能阻断某一步的条件,就能大大降低这种攻击的成功可能。如果不能补上系统的所有漏洞(阻断所有攻击步骤的所有条件),那应该尽可能打断所有的攻击链(阻断一次完整攻击中的部分环节条件)。
IoT的供应链问题更严重,因为依赖的东西更多。

快手应用安全演进

原来root pom禁用fastjson是因为它是漏洞之王。应当用Jackson和gson来代替。
对新代码,用静态扫描规则扫描。对老代码,先让对外业务应急处理,再让对内业务应急处理。
业务发展迅速,很多漏洞都是上线后才发现。
前期预防,培训考试,Java安全SDK,IDE插件,maven安全插件
后期检出,Java静态扫描,动态扫描,安全测试平台,API管控平台,IAST(与基于扫描的漏洞发现不同。通过插桩收集安全信息,在生产阶段发现漏洞),Docker扫描,域名管控,端口管控
一个倒逼的方法是,把漏洞告诉测试,让测试去逼研发,这样研发就不会再把安全当成负担,而是成了一种“安全绩效”,证明自己部门的代码质量。

关于老师提到的sig3:
上网一搜h5 sig3,出来的全是逆向报告。
按我了解,签名算法的安全性不依赖算法的保密性。
我深入了解了一下,这里的“签名算法”不是我想的那个签名算法。
我理解的签名算法,是MANIFEST.MF,CERT.SF,CERT.RSA,本质是摘要后,用私钥签名,作用是防止app被第三方篡改(第三方可以篡改、重新摘要,但做不到用原始私钥来给摘要签名)。
而此处的签名算法,作用是保护API接口。第三方可以抓包判断出某种请求对应的API,如何避免第三方利用这个信息随意伪造请求?比如说,获知某人的账户信息后伪造请求,获取其主页推荐内容。这种签名算法通过自己设计一个私有算法,将账户信息进行一些计算,附加在请求的最后。服务端可以校验结尾的这种信息(称之为签名信息也还算有道理),如果前后能对上,才予以响应。这样一来就能避免请求的伪造。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值