DeepLearning之LSTM模型输入参数:time_step, input_size, batch_size的理解

1. LSTM模型 输入参数理解

(Long Short-Term Memory)

lstm是RNN模型的一种变种模式,增加了输入门,遗忘门,输出门。

LSTM也是在时间序列预测中的常用模型。

小白我也是从这个模型入门来开始机器学习的坑。

LSTM的基本概念与各个门的解释已经有博文写的非常详细:推荐博文:【译】理解LSTM(通俗易懂版)

这篇文章写的非常详细,生动,概念解释的非常清楚。我也是从这个博文里开始理解的。


2. 模型参数

  1. 模型的调参是模型训练中非常重要的一部分,调整参数前的重要一步就是要理解参数是什么意思,才能帮助更好的调整参数。
  2. 但是发现在一些实战模型将代码直接放在那里,但是基本参数只是把定义写在哪里,没有生动的解释,我一开始看的时候也是一脸懵逼。
  3. 在我寻找着写参数的额定义的时候,往往看不到让小白一眼就能明白的解释。
  4. 希望从一个小白的角度来讲解我眼中的这些参数是什么意思,如果有不对,还请指出交流。

3. LSTM 的参数输入格式

1. 一般表示为[batch_size, time_step, input_size]
2. 中文解释为[每一次feed数据的行数,时间步长,输入变量个数]</
评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dianchen_Raw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值