DeepLearning之LSTM模型输入参数:time_step, input_size, batch_size的理解

1. LSTM模型 输入参数理解

(Long Short-Term Memory)

lstm是RNN模型的一种变种模式,增加了输入门,遗忘门,输出门。

LSTM也是在时间序列预测中的常用模型。

小白我也是从这个模型入门来开始机器学习的坑。

LSTM的基本概念与各个门的解释已经有博文写的非常详细:推荐博文:【译】理解LSTM(通俗易懂版)

这篇文章写的非常详细,生动,概念解释的非常清楚。我也是从这个博文里开始理解的。


2. 模型参数

  1. 模型的调参是模型训练中非常重要的一部分,调整参数前的重要一步就是要理解参数是什么意思,才能帮助更好的调整参数。
  2. 但是发现在一些实战模型将代码直接放在那里,但是基本参数只是把定义写在哪里,没有生动的解释,我一开始看的时候也是一脸懵逼。
  3. 在我寻找着写参数的额定义的时候,往往看不到让小白一眼就能明白的解释。
  4. 希望从一个小白的角度来讲解我眼中的这些参数是什么意思,如果有不对,还请指出交流。

3. LSTM 的参数输入格式

1. 一般表示为[batch_size, time_step, input_size]
2. 中文解释为[每一次feed数据的行数,时间步长,输入变量个数]

3.1 分开讲解,input_size

  1. 如果你使用7个自变量来预测1个因变量,那么input_size=7,output_size=1
  2. 如果你使用8个自变量来预测3个因变量,那么input_size=8,output_size=3

这个还是比较好理解的,你的输入数据,想要通过什么变量预测什么变量应该是比较清楚的。

难点是另外两个参数的区别。

3.2 分开讲解,batch_size

  1. 如果你的数据有10000行,训练100次把所有数据训练完,那么你的batch_size=10000/100=100
  2. 如果你的数据有20000行,同样训练100次把所有数据训练完,那么你的batch_size=20000/100=200
  3. 如果你的数据有20000行,训练50次把所有数据训练完,那么你的batch_size=20000/50=400
  4. 以此类推
  5. 不过只是举个例子,实际的情况要看你的数据样本,一般的batch_size小于100,来使你的训练结果更好,一次feed太多行数据,模型容易吃撑,消化不良,可能需要健胃消食片,哈哈哈哈

3.3 分开讲解, time_step

最最最最难理解的就是这个time_step了,我也是琢磨了好久。

  1. 首先要知道,time_step是指的哪个过程?
    是不是看到的图都是在画,输入了什么,遗忘了什么,输出了什么,以为每个细胞状态都是1个time_step?
    如果这样的话,那么恭喜你,你和我一样,都是想错了,其实那些一串的流程细胞状态图都是在1个time_step!都是在1个time_step!都是在1个time_step!
  2. 是不是很惊讶,很奇怪?
  3. 那讲的是time_step的内部进行的,而不是在time_step之间。
  4. 换句话说,所谓的t-1的遗留状态也是在一个time_step里面的事情,t多少取决于time_step的取值。

此时,再来看看time_step的本身含义,时间步长,时间步长,那么一定是是和时间有关系啊!!!

4. 重点

4.1 batch_size与time_step

  1. 之前的batch_size中只是规定了一个每次feed多少行数据进去,并没有涵盖一个时间的概念进去,
  2. 而这个参数刚好就是对于时间的限制,毕竟你是做时间序列预测,所以才多了这个参数。
  3. 换句话说,就是在一个batch_size中,你要定义一下每次数据的时间序列是多少?
  4. 如果你的数据都是按照时间排列的,batch_size是100的话,time_step=10
  5. 在第1次训练的时候,是用前100行数据进行训练,而在这其中每次给模型10个连续时间序列的数据。
  6. 那你是不是以为应该是1-10,11-20,21-30,这样把数据给模型?还是不对,请看下图。

4.2 [batch_size, time_step, input_size]=[30,5,7]

time_step=n, 就意味着我们认为每一个值都和它前n个值有关系
在这里插入图片描述

  1. 如果 [batch_size, time_step, input_size]=[30,5,7]
  2. 那么,上图中,黑色框代表的就是一个batch_size中所含有的数据的量。
  3. 那么,从上到下的3个红色框就为 time_step为5的时候,每次细胞输入门所输入的数据量。
  4. 那么,列B~列H,一共7列,就为 input_size

4.3 举例

再看下图
在这里插入图片描述

time_step=n, 就意味着我们认为每一个值都和它前n个值有关系

  1. 假如没有time_step这个参数, [input_size=7,batch_size=30],一共只需要1次就能训练完所有数据。
  2. 如果有,那么变成了 [input_size=7,batch_size=30, time_step=5],需要30-5+1=26,需要26次数据连续喂给模型,中间不能停。
  3. 在26次中每一次都要把上一次产生的y,与这一次的5行连续时间序列数据一起feed进去,再产生新的y
  4. 以此往复,直到此个batch_size 结束。

结语

1. input_size 是根据你的训练问题而确定的。

2. time_step是LSTM神经网络中的重要参数,time_step在神经网络模型建好后一般就不会改变了。

3. 与time_step不同的是,batch_size是模型训练时的训练参数,在模型训练时可根据模型训练的结果以及loss随时进行调整,达到最优。


非常感谢以下作者,让我慢慢理解了参数意义,才有了以上学习笔记!

参考资料:

菜鸡的自我拯救,RNN 参数理解

视觉弘毅,RNN之多层LSTM理解

MichaelLiu_dev,理解LSTM(通俗易懂版)

Andrej Karpathy,The Unreasonable Effectiveness of Recurrent Neural Networks

  • 167
    点赞
  • 456
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 57
    评论
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
05-27
在这段代码,可能存在以下错误: 1. 缺少必要的库或模块。 2. training_set 的文件路径是否正确。 3. training_set 的数据处理是否正确。 4. LSTM 模型的定义是否正确。 5. 训练和预测的代码是否正确。 下面是修改后的代码: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler # 读取数据 training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values # 定义数据处理函数 def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) # 对数据进行归一化处理 sc = MinMaxScaler() training_data = sc.fit_transform(training_set) # 定义窗口长度 seq_length = 1 # 对数据进行窗口划分 x, y = sliding_windows(training_data, seq_length) # 划分训练集和测试集 train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) # 定义 LSTM 模型 class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out # 定义训练参数 num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 # 实例化 LSTM 模型 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) # 定义损失函数和优化器 criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # 训练模型 runn = 10 Y_predict = np.zeros((runn, len(dataY))) for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() # 对结果进行反归一化 data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(Y_predict, axis=0) Y_Predict_T = np.transpose(np.array(Y_Predict)) ```
评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dianchen_Raw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值