lstm原理+timesteps理解+实操+时间序列多变量

本文介绍了LSTM的工作原理,重点解释了时间步长(timesteps)的理解,包括如何将多变量时间序列数据转化为适合LSTM模型的格式。实操部分展示了LSTM模型的构建,强调了在处理多变量和多步预测时的注意事项。此外,还讨论了LSTM的变种,如GRU,并引用了相关研究比较不同RNN结构的性能,指出在特定情况下GRU可能因为参数少而训练更快,但LSTM在数据充足时可能表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

李宏毅老师讲RNN LSTM 视频
很好地讲述了lstm的原理。
在这里插入图片描述

timesteps理解

lstm的样本:样本数,时间步长,特征数量,在时间序列中如何转化?
对于多变量时间序列的预测,最后一段解释了。
y~y-1 y-2 y-3 x-1 x-2 x-3
假定样本数600,一个因变量,6个自变量(yx的滞后项)
那么,可以这样写:
(600,1,6):timesteps为1,不进行记忆的传递,特征数为6.
(600,6,1):timesteps为6,只有一个特征,但是记忆传递6次
(600,3,2):2个特征,滞后3次:注意在r转化矩阵时,要检验得到的矩阵是否准确
这取决于我们的自变量特征上下文是否有联系。
在这里插入图片描述

### 使用LSTM和CNN进行时间序列预测的Python实现 为了利用LSTM和CNN的优势来处理时间序列预测问题,可以构建一个混合模型,在此过程中先使用CNN层提取局部特征,再由LSTM层捕捉长时间跨度上的模式变化。以下是基于Keras框架的一个简单实例说明。 #### 构建CNN-LSTM模型架构 ```python from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Flatten, LSTM, Dense model = Sequential() # 添加一维卷积层用于特征抽取 model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(n_timesteps, n_features))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) # 将扁平化后的输出重新塑形以便送入LSTM层 reshape_dim = (new_timesteps, new_features) # 需要根据实际情况调整这两个参数 model.add(Reshape(target_shape=reshape_dim)) # 增加LSTM层以捕获时间依赖性 model.add(LSTM(units=50, activation='relu')) # 输出层定义 model.add(Dense(1)) # 编译模型并指定优化器与损失函数 model.compile(optimizer='adam', loss='mse') ``` 上述代码片段展示了如何创建一个融合了CNN和LSTM特性的神经网络结构[^1]。这里`Conv1D`负责初步的数据预处理工作,即从原始输入中挖掘有用的空间特性;而后续加入的`MaxPooling1D`则有助于减少维度复杂度的同时保留重要信息。接着通过`Flatten()`操作转换成适合传递给下一层的形式,并最终经过适当重塑后进入核心部分——LSTM单元来进行更深层次的学习过程[^2]。 #### 准备训练数据集 对于任何机器学习项目而言,准备高质量的数据都是至关重要的一步。当涉及到时间序列分析时,则需特别注意保持样本间顺序不变以及合理划分训练集与测试集的比例等问题。具体做法可能包括但不限于: - 对于每条记录都应按照时间先后排列; - 可能还需要考虑标准化或归一化数值范围内的差异; - 创建滑动窗口形式的小批量批次作为输入X及其对应的标签Y。 #### 训练模型 一旦完成了前期准备工作之后就可以调用`.fit()`方法启动实际训练流程了: ```python history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test,y_test), verbose=verbose) ``` 此处`X_train`, `y_train`分别代表训练阶段使用的自变量矩阵和因变量向量;同样地,`X_test`,`y_test`则是用来评估性能表现的一组独立观测值集合[^4]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值