自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 资源 (1)
  • 收藏
  • 关注

原创 linux学习2

处理器得到的地址永远是虚拟地址,我们要通过页表去获取真实的物理地址,访问的方法如下图,这里展示了如果多个进程执行的时候有共同代码,指向同一份区域这里可以节省代码空间,每个进程都有自己的页表。

2023-04-05 21:47:46 157

原创 linux学习1

第一次记录

2023-04-05 19:50:45 151

原创 Freertos的个人学习笔记2

因为freertos就是一个任务的调度器,所以它看的只有关于优先级的大小,这里也有其他的操作,比如挂起和恢复,比较重要的我认为是关于中断与任务的通信,主要使用的是信号量。1、如果任务被挂起,那么调度器将不会找到它,无论是在就绪、运行、阻塞的状态,只要是被挂起就消失了,只有当恢复的时候才有出现在就绪链表之中。4、有from_ISR就是专门在中断服务函数中使用,这里要注意的就是中断时间要快,不能挂起也不能阻塞。,钩子就是在即将运行空闲的手前一秒运行,运行完就到了空闲任务了,空闲任务不允许出现阻塞。

2023-04-04 19:10:30 138

原创 Freertos的个人学习笔记1

初认识和移植过程

2023-03-28 12:10:47 113

原创 点亮LED灯之寄存器操作

使用C语言在keil5上用stm32f103的寄存器点亮led的流程和代码

2023-03-27 12:41:54 660

原创 BLDC电机FOC控制技术学习笔记2

变换算法,用的是线性代数的知识,你也可以很容易掌握的!

2023-03-26 18:16:11 329

原创 BLDC电机FOC控制技术学习笔记

对自己的学习记录

2023-03-26 17:22:06 1125 1

原创 acc_threshold must be a positive number in function ‘cv::HoughCircles‘

cv2,霍夫圆检测的一些错误记录

2022-03-24 15:39:22 211

原创 教matlab唱周董的《七里香》

我们知道声音是波,那么就是正余弦的各种骚操作了,各种振幅、频率和组合提示:20Hz到20000Hz人耳能听到,每秒振动次数低于20次以下称为次声波,每秒高于20000次称为超声波。当然不信自己可以用matlab尝试(最后附上代码)这里是很详细的视频链接,我就是总结一下视频的内容写一下笔记而已操作很简单,就是先生成一个正弦sin(x)来试试,然后用sound(sin(x)),但结果没有发出声音,这是因为这个的频率才1,次声波怎么可能听到哈哈,抬高一点试试。Fs=8192;%这个是采样率,也就.

2022-01-03 17:37:01 1930

原创 强化学习——enforcement_learning

内容:提示:很多概念性的东西不再赘述,很多资料展示:本人对强化学习的理解和笔记简单说一下,强化学习是一种向大自然学习的一种机器学习方法,在我看来就是模拟小孩子对世界好奇去接触世界从而一步步长大的过程,这个过程中一定会有很多次跌倒或者受伤,同时也有成功的喜悦,我们追求的是更好的生活,更好的自己,所以向着这个方向,我们不断学习,这个和我们身边的环境交互并产生我们自己想法的过程,就是所谓的强化学习。举一个例子:一个小孩子肚子饿了想喝牛奶,他看见的是厨房(环境),厨房里面的冰箱有牛奶,他走了过去(决策)

2022-01-03 16:58:20 328

原创 机械臂的路径规划

很容易的,现学现用:理解本质之后,这里是直接可以套公式的一、无速度约束,三项插值的方法:a是多项式的系数,a0是t_0的系数,a1是t_1的系数θ0是一开始的角度,θf是最终的角度,tf是最终的时间举例:给出必要的值,比如 θ0=-5,θf=80,tf=4套公式之后a0=-5,a1=0,a2=15.9375,a3=-2.6563二、有速度约束,三项插值的方法:用法和上面一样的三、有加速度、速度约束,高阶插值的方法:用法和上面一样的以上介绍的方法简单粗暴,应用挺简单的,但有

2021-12-19 22:22:37 1537

原创 周杰伦高清头像

2021-12-19 11:59:30 1200

原创 当我爱上机器人学的那一刻,我将它续写在诗的末尾

第一章第二章第三章什么是雅可比矩阵雅可比矩阵把运动学和微分运动学联系起来,换句话说,微分运动学是通过运动学和雅可比矩阵得来的第四章第五章第七章为什么要引入抛物线插值?第八章...

2021-12-16 10:29:21 1128

原创 劳斯判稳和朱利判稳

劳斯判稳:如何算?特殊情况:1、第一列出现0,后面不为0,以一个很小的正数 来代替为零的这项;2、全行都是0数据如何使用?第一列全部是正数,系统稳定;第一列的符号变化的次数就是不稳定点的数量。朱利判稳:第一行直接写,第二行就反过来抄一遍;下面的奇数行就这样算,偶数行就反过来抄一遍必要条件的判断。数据的作用:第一列全是正数,系统稳定;第一列出现非正数,数量等于不稳定点的数量劳斯判稳是运用在s域连续的,而朱利是运用在离散的z域的...

2021-12-15 10:30:29 5199

原创 控制理论部分

判稳条件这里是关于状态空间的视频解析,B站Drcan讲的,对于判稳的讲解要看这个视频,通过爱情的关系来解读引入,对新手很友好。

2021-12-14 22:13:10 324

原创 adaboost的死亡循环

学习目标:提示:思想,通过几个弱分类器加起来组成一个强分类器参数:1、 权值P(x)2、 系数α_t步骤和公式:1、第一步,初始化P,一般是1/N通过一个分类函数h1(x)来分类,选取错误率最低的一种,计算错误率(把分类错误的权值加起来)和系数此时的强分类器只有一个弱分类器,一般是需要继续加的2、更新参数先更新权值,上一步分类错误会增大错误自身的权值再次选取一个h2(x)函数,用来分类,重复步骤1继续计算权值和系数此时的强分类器就有两个弱分类器了这里就可以判断是否全

2021-12-14 01:20:56 128

原创 华丽的支持向量机3部曲

啥也不是,直接上公式:上面就是支持向量机,我们只需要找出w和b就行了,套就完事。公式和步骤:第一步,写出y函数提示:α是未知数同时还附加有下面的约束函数第二步,分别对几个α关于y函数求导这里是为了求出α的值,直接让y’=0加上上面的约束函数就可以求出α值提示:若α小于0,那么说明出现了边界值;解决办法:让其中一个α=0,可以求出其他的正常值第三步,直接求出w(向量)和b(常数),代入最后的一般形式一般形式:...

2021-12-14 00:01:30 1050

原创 慢慢啃机器人学1

学习机器人学:这是参考书,名字叫做《Robot Modeling and Control by Mark W. Spong, Seth Hutchinson, M. Vidyasagar 2020》,我看的是英文版本的,当然实在看不懂还是会参考中文版,此文章仅仅是个人学习记录(不是教小白入门,因为我也是学了点皮毛而已),用来深入学习机器人学和提高英文水平,所以有些地方写错很正常,欢迎批评改正!学习内容:基本构成对于机器臂来说,本身可以看作机器臂 = 关节 + 连杆(刚性)对于关节来说,又可以分

2021-11-15 00:22:31 491

原创 兄弟,学点AI吗?3、粒子群算法(PSO)

粒子群算法(PSO----Particle swarm optimization):玉外纳:大自然和智慧在任何事物上都不存在分岐。激励:我要一步一步往上爬,在最高点乘着叶片往前飞。粒子群概念:这是仿生算法,咱们先从鸟群入手来看看,下图是一群可爱的小鸟,它们现在一起去找食物,这个过程中科学家观察出了其中的智能表现,并分析研究出来关于鸟群找食物的算法,模仿鸟类的智能,这个就是我们要说的粒子群算法,只不过把每个小鸟看作一个粒子而已,粒子加起来就是粒子群。主要思路:提示:我们先控制某个变量,再间

2021-11-10 21:31:43 1442

原创 兄弟,学点AI吗?2知识的确定性系统

菜鸟入门AI基本知识——知识的确定我:来,咱来学知识了激励:找寻自己跟别人不一样,并将它放大。这样才能比别人不平凡,不一样。知识和知识的表示:*Tip:*大家可以参考这篇文章,比我写得全面很多。知识(是什么?)百度百科:人们在改造世界的实践中所获得的认识和经验的总和;海耶斯-罗斯:知识=事实+信念+启发式;费根鲍姆:知识式经过裁剪、塑造、解释、选择和转换了的信息;《博弈圣经》:把识别万物实体与性质的是与不是,定义为知识。其实这个定义有很多,看看百度百科的,还有国内国外的有很多,我个

2021-11-09 02:55:22 551

原创 兄弟,学点 A I吗?1、概述

菜鸟入门的AI知识基础——第一章啥是人工智能?莫急,先看看基本概念好的,没了就这么多啥是人工智能?莫急,先看看基本概念1、自然智能自然界中的智能现象,例如人识别景物,鸟类寻找食物,形象思维的过程。2、人工智能人类学习自然中的智能现象后创造的智能。3、分类(1)强人工智能:实现最终理想的目标,使得机器可以和人类一样具有全部或者大部分的智能;(2)弱人工智能:在某个方面可以实现智能,比如比较先进的扫地机器人、语音助手等。4、发展史虽然这个不是重点,但我觉得学习一门学课,很有必

2021-11-08 17:30:09 2762

STM32学习总结.zip

新手

2021-12-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除