【强化学习】AC注释版本

## 强化学习 Actor-critic
# 和PG比起来主要的变化:
# 评估点由状态价值变成了TD_error,网络形式变了
# learn函数长得不一样
# action有一个优化函数,优化的是价值函数,希望最大化期望的reward,Critic网络也有一个reward,希望最小化现实和估计的误差(即td——error)
# Actor使用我们上一节讲到的策略函数,负责生成动作(Action)并和环境交互。而Critic使用我们之前讲到了的价值函数,负责评估Actor的表现,并指导Actor下一阶段的动作


import gym
# import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()
import numpy as np
import random
from collections import deque

# Hyper Parameters
GAMMA = 0.95  # discount factor  衰减因子
LEARNING_RATE = 0.01  # 探索率


class Actor():
    def __init__(self, env, sess):  # 初始化
        # init some parameters
        self.time_step = 0  # 某个地方需要用的步数
        self.state_dim = env.observation_space.shape[0]  # 状态维度
        self.action_dim = env.action_space.n  # 动作维度
        self.create_softmax_network()  # 创建softmax网络

        # Init session      初始化tensorflow参数
        self.session = tf.InteractiveSession()
        self.session.run(tf.global_variables_initializer())  # 初始化 tensorflow 参数。

    def create_softmax_network(self):  # 创建softmax网络
        # network weights
        W1 = self.weight_variable([self.state_dim, 20])  # w1 权重,4*20的网络
        b1 = self.bias_variable([20])  # b1权重,y = w1*x + b1
        W2 = self.weight_variable([20, self.action_dim])
        b2 = self.bias_variable([self.action_dim])
        # input layer
        self.state_input = tf.placeholder("float", [None, self.state_dim])  # 状态输入层占位,多少组不知道,每组有4个状态
        self.tf_acts = tf.placeholder(tf.int32, [None, 2], name="actions_num")  # 给他的值对应于依据概率选择出来的动作
        self.td_error = tf.placeholder(tf.float32, None, "td_error")  # TD_error  PG中基于状态价值,这里评估点发生了一点变化

        # hidden layers
        h_layer = tf.nn.relu(tf.matmul(self.state_input, W1) + b1)  # 进行 y = w1*x + b1 的运算 ,并激活成可输出的状态

        # softmax layer
        # matmul返回两个数组的矩阵乘积,结果还是一个矩阵
        self.softmax_input = tf.matmul(h_layer, W2) + b2  # #进行 y = w2*x + b2 的运算,输出是两个是数(不确定)TODO

        # softmax output
        self.all_act_prob = tf.nn.softmax(self.softmax_input, name='act_prob')  # softmax输出层,输出每个动作的概率

        # 计算logits 和 labels 之间的softmax 交叉熵
        # 函数先对 logits 进行 softmax 处理得到归一化的概率,将lables向量进行one-hot处理,然后求logits和labels的交叉熵:
        self.neg_log_prob = tf.nn.softmax_cross_entropy_with_logits(logits=self.softmax_input,
                                                                    labels=self.tf_acts)
        # TODO softmax_cross_entropy_with_logits 和 sparse_softmax_cross_entropy_with_logits 的区别是啥

        # 这句是在算损失函数了,定义为softmax交叉熵损失函数和TD_error的乘积
        self.exp = tf.reduce_mean(self.neg_log_prob * self.td_error)  # 策略梯度函数

        # 创建优化器 这里需要最大化当前策略的价值,因此需要最大化self.exp,即最小化-self.exp
        # 由于tensorflow要minimize误差 但是我们希望这个概率变大所以要加个负号
        # 利用tensorflow中的Adam优化算法最小化loss函数
        # Adam优化算法:是一个寻找全局最优点的优化算法,引入了二次方梯度校正。
        self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(-self.exp)

    def weight_variable(self, shape):
        initial = tf.truncated_normal(shape)
        return tf.Variable(initial)

    def bias_variable(self, shape):
        initial = tf.constant(0.01, shape=shape)
        return tf.Variable(initial)

    def choose_action(self, observation):  # 依据概率选择动作
        """
        选择动作 :这里的observation其实就是状态,当前的状态先传入state_input(也就相当于softmax网络的入口),
        softmax网络的输出是针对当前状态每个动作的概率,第一句就是运行了一个会话进行这个过程。
        #TODO prob_weights 应该是一个动作对应概率的矩阵,怎么查看数据类型来着忘了
        下一句就是依据概率选择动作了,选择概率最大的动作
        """
        # np.newaxis功能:增加一个维度,具体见印象笔记
        prob_weights = self.session.run(self.all_act_prob, feed_dict={self.state_input: observation[np.newaxis, :]})
        # 这个range表示这个action的大小,后面的p表示概率分布, .ravel的意思是将数组维度拉成一维数组,也就是将矩阵向量化,见印象笔记
        action = np.random.choice(range(prob_weights.shape[1]), p=prob_weights.ravel())
        return action

    def learn(self, state, action, td_error):
        """
        s,a 用于产生梯度上升法的方向,这时候的action是上面这个函数依据概率选择出来的动作
        td 来自Critic,用于告诉Actor这个方向对不对
        """
        s = state[np.newaxis, :]  # 把state变成(4,1)的形状
        one_hot_action = np.zeros(self.action_dim)  # 初始化one_hot 形式的action
        one_hot_action[action] = 1  # action是数字几就把第几个位置上的数变成1
        a = one_hot_action[np.newaxis, :]  # 然后再把它变成横向向量的形式
        # train on episode
        self.session.run(self.train_op, feed_dict={
            self.state_input: s,
            self.tf_acts: a,     # 把动作传给了tf_acts
            self.td_error: td_error,
        })


# critic网络中会用到的一些超级参数
EPSILON = 0.01  # final value of epsilon   epsilon 的最小值,当 epsilon 小于该值时,将不再随机选择行为。
REPLAY_SIZE = 10000  # experience replay buffer size  经验回放缓冲区大小
BATCH_SIZE = 32  # size of minibatch
REPLACE_TARGET_FREQ = 10  # frequency to update target Q network


class Critic():
    def __init__(self, env, sess):
        # init some parameters
        self.time_step = 0
        self.epsilon = EPISODE
        self.state_dim = env.observation_space.shape[0]  # 状态维度
        self.action_dim = env.action_space.n  # 动作维度   TODO  .n是什么意思?

        self.create_Q_network()  # 创建Q网络
        self.create_training_method()  # 创建训练方法

        # Init session  初始化会话
        self.session = sess
        self.session.run(tf.global_variables_initializer())

    def create_Q_network(self):  # critic网络,使用类似于DQN的三层神经网络,但是只有一维输出值
        # network weights

        W1q = self.weight_variable([self.state_dim, 20])
        b1q = self.bias_variable([20])
        W2q = self.weight_variable([20, 1])
        b2q = self.bias_variable([1])
        self.state_input = tf.placeholder(tf.float32, [1, self.state_dim], "state")  # 应该是指只输入了一组?
        # hidden layers
        h_layerq = tf.nn.relu(tf.matmul(self.state_input, W1q) + b1q)  # #进行 y = w1*x + b1 的运算 ,从线性状态激活成非线性状态
        # Q Value layer
        self.Q_value = tf.matmul(h_layerq, W2q) + b2q  # 进行 y = w2*x + b2 的运算,输出是两个是数(不确定)TODO

    def create_training_method(self):  # 创建训练方法
        self.next_value = tf.placeholder(tf.float32, [1, 1], "v_next")
        self.reward = tf.placeholder(tf.float32, None, 'reward')

        # https://blog.csdn.net/tian_jiangnan/article/details/105047745
        # tf.variable_scope是一个变量管理器,下面的东东即使变量名一样,作用域不一样,引用的时候就不会出现穿插问题了
        with tf.variable_scope('squared_TD_error'):  # 在作用域名为squared_TD_error的作用域里面
            self.td_error = self.reward + GAMMA * self.next_value - self.Q_value  # 计算TD_error
            self.loss = tf.square(self.td_error)  # tf.square是对td_error里面每一个元素求平方
        with tf.variable_scope('train'):  # 在作用域名为train的作用域里面
            # 利用tensorflow中的Adam优化算法最小化loss函数
            # Adam优化算法:是一个寻找全局最优点的优化算法,引入了二次方梯度校正。
            self.train_op = tf.train.AdamOptimizer(self.epsilon).minimize(self.loss)

    def train_Q_network(self, state, reward, next_state):   # 训练Q网络
        s, s_ = state[np.newaxis, :], next_state[np.newaxis, :]    # 当前状态和下一个状态
        # 由输入状态和Q_value计算状态价值函数
        v_ = self.session.run(self.Q_value, {self.state_input: s_})
        # 运行会话输出td_error
        td_error, _ = self.session.run([self.td_error, self.train_op],
                                       {self.state_input: s, self.next_value: v_, self.reward: reward})  # 得到td误差
        return td_error

    def weight_variable(self, shape):  # 权重变量
        initial = tf.truncated_normal(shape)  # 从一个正态分布片段中输出平均数值  shape:决定输出张量的形状
        return tf.Variable(initial)  # 更新参数,变量存在内存中

    def bias_variable(self, shape):  # 偏执变量
        initial = tf.constant(0.01, shape=shape)  # 生成常量矩阵
        return tf.Variable(initial)


# Hyper Parameters
ENV_NAME = 'CartPole-v0'
EPISODE = 3000  # Episode limitation
STEP = 3000  # Step limitation in an episode
TEST = 10  # The number of experiment test every 100 episode  每训练100幕数据就做一次效果测试,测试10次取平均


def main():
    # initialize OpenAI Gym env and dqn agent
    sess = tf.InteractiveSession()  # 开启会话
    env = gym.make(ENV_NAME)  # 导入环境
    actor = Actor(env, sess)  # 定义AC网络
    critic = Critic(env, sess)

    for episode in range(EPISODE):
        # initialize task
        # a) 初始化S为当前状态序列的第一个状态, 拿到其特征向量ϕ(S)
        state = env.reset()  # 初始化第一个状态
        # Train
        for step in range(STEP):  # 这部分actor网络和critic网络进行交互
            # b) 在Actor网络中使用ϕ(S)作为输入,输出动作A,基于动作A得到新的状态S′,反馈R。
            action = actor.choose_action(state)  # e-greedy action for train  输入状态,得到动作A

            #  c) 在Critic网络中分别使用ϕ(S),ϕ(S‘′)作为输入,得到Q值输出V(S),V(S′)
            next_state, reward, done, _ = env.step(action)  # 基于动作A得到新的状态next_state,回报reward
            # 由train_Q_network计算得到TD误差
            td_error = critic.train_Q_network(state, reward, next_state)  # gradient = grad[r + gamma * V(s_) - V(s)]
            # 更新Actor网络参数θ
            actor.learn(state, action, td_error)  # true_gradient = grad[logPi(s,a) * td_error]   最大化价值函数
            state = next_state  # 为下一步做准备,下一个状态即为下一步的当前状态
            if done:  # 达到终止条件就退出循环
                break

        # Test every 100 episodes
        if episode % 100 == 0:
            total_reward = 0  # 初始化总回报
            for i in range(TEST):
                state = env.reset()  # 初始化环境
                for j in range(STEP):
                    env.render()  # env.render()函数用于渲染出当前的智能体以及环境的状态
                    action = actor.choose_action(state)  # # 根据状态选择动作
                    state, reward, done, _ = env.step(action)  # 根据action执行step,得到三状态
                    total_reward += reward  # 为了十次取一次平均,先加后除
                    if done:  # 如果达到了终止条件,则退出
                        break
            ave_reward = total_reward / TEST  # 求平均
            print('episode: ', episode, 'Evaluation Average Reward:', ave_reward)


if __name__ == '__main__':
    main()

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值