高等代数期末考试题库及答案_北京大学高等代数第3版下册考试题库

这是一份详细解读北京大学数学系《高等代数》(第3版)下册的考试题库,包含名校考研真题、课后习题、章节题库和模拟试题,覆盖线性空间、线性变换、λ-矩阵等核心章节,旨在帮助学生全面掌握高等代数知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向然学习资料网为同学们提供北京大学高等代数第3版下册考试题库

北京大学数学系《高等代数》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册)

8874f850155ff50517073d17a56b1b85.png

课程目录

第一部分 名校考研真题

 第6章 线性空间

 第7章 线性变换

 第8章 λ-矩阵

 第9章 欧几里得空间

 第10章 双线性函数与辛空间

第二部分 课后习题

 第6章 线性空间

 第7章 线性变换

 第8章 λ-矩阵*

 第9章 欧几里得空间

 第10章 双线性函数与辛空间

第三部分 章节题库

 第6章 线性空间

 第7章 线性变换

 第8章 λ-矩阵

 第9章 欧几里得空间

 第10章 双线性函数与辛空间

第四部分 模拟试题

 北京大学数学系《高等代数》(第3版)配套模拟试题及详解

课程简介

本书是详解研究生入学考试指定考研参考书目为北京大学数学系《高等代数》的配套题库,包括名校考研真题、课后习题、章节题库和模拟试题四大部分。为了方便题库上线和读者阅读,本题库分上、下两册,每章包括以下四部分:

第一部分为名校考研真题及详解。本部分从指定北京大学数学系编写的《高等代数》(第3版)为考研参考书目的名校历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。

第二部分为课后习题及详解。本部分对北京大学数学系编写的《高等代数》(第3版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。

第三部分为章节题库及详解。本部分严格按照北京大学数学系编写的《高等代数》(第3版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。

第四部分为模拟试题及详解。参照北京大学数学系编写的《高等代数》(第3版)教材,根据各高校历年考研真题的命题规律及热门考点精心编写了1套考前模拟试题,并提供详尽的解答。通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。

本书提供电子书及纸质书,方便对照复习。

【试读部分内容】

第一部分 名校考研真题

第6章 线性空间

一、选择题

1.下面哪一种变换是线性变换(  ).[西北工业大学研]

A.8fedd742770efb2b1ee7b1feef480d1d.png  B.0edd1467d40840bcd55bbcf52b718700.png C.6486fe4d3a6509c716c0f85419ec751c.png

【答案】C查看答案

【解析】0571333b44f3193e05239cc159bfef7f.png不一定是线性变换,比如69d0deb2724bcc257eefb1d7a5d07544.pnga9cab16b3ca348dd6876d2df029a96f9.png也不是线性变换,比如给8e25f8778ae3d54b55d7103454ed4196.pngf0767930547a57c457f382b0b5aa7af1.png不是惟一的.

2.在n维向量空间取出两个向量组,它们的秩(  ).[西北工业大学研]

A.必相等     B.可能相等亦可能不相等 C.不相等

【答案】B查看答案

【解析】比如在1fa017889c1df803f95ea5ce1ac73541.png中选三个向量组

(I):0

(Ⅱ)48c670f693abbaebc7f268abc232f441.png

(Ⅲ)192d39a8455ba0485ff4b45b51dd62a3.png

若选(I)(II),秩ed3754378554445d82f9003917768123.png秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.

二、填空题

1.若

f514748d91022e75ec2a9a68c9e31554.png

则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]

【答案】2;4.查看答案

【解析】在复数域上令33830273110705b1f66dced2785c4d3c.png;则3f73a1d715da40d9e4d4857e1655e287.png是线性无关的.

0cbfe6549e1ce05de0606756b57caf81.png

370c0b9a37d8e2fc141243a9157a1301.png

此即证5ce0d758748429c317bc32c33a62fda7.png可由63da8d98135b24492a37d69aa6afcc59.png线性表出.2a4adfe02d4092797958a80e608916cd.png

在实数域上,令

90d4ec9996da8018e62d805800ac5268.png

49bde72d765049abdced3ec95c4dd17f.png,其中7821042be65803e78922ff9a2c2f4557.png,则

d74756513a163cd4f67e115feb224840.png

ca54e88f53298cdb1a1a0bf70b155034.png此即53e97a71d2689f62d6d1a6f0af8c6918.png在R上线性关.

abb302027d08062e41d8bd353958f321.png可由65d50872f088bfcb313e89a5fe9e8890.png线性表出,所以在实数域R上,有5e15f74ab9e3032465336733829df627.png

三、分析计算题

1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求d19eaa2f308f269ad0397d18f0023eb4.png之维数的一切可能值.[南京大学研] 

解:取c8d66582c49e03a5babc5c09043fcc5f.png的一组基33ef22f73e7853bf00f423b7728f27fc.png,再取c170a60feadfc960177b259b08c154be.png的一组基80600c475a2259c7cb88e37f77213b55.png

664b516cdb7024ef24f4018cf7ff9daf.png

58cf802557ff4513cefc6cd18302c189.png=秩26c001d6e6ff4aa4473a6b43cb40ff60.png

b1dd258d5728ebeb26510cced44c43fd.png

2.设U是由f30ba07ab6e567d3b060441842ed91f5.png生成的3fbef0f6d30711b2e657770c4c8658ce.png的子空间,W是由4f14ed9d4945e12d6383e68ade25e240.png生成的b23b57cbc359e143c507cc502761f157.png的子空间,求

(1)U+W:

(2)L∩W的维数与基底.[同济大学研] 

解:(1)令

c7efa4c4382a88753b0a58fb4df68d34.png

可得4bdadb63337d7e1e648608239ec5feae.png.所以

2ac3c6a26803bdb2e6ff79e8fbb7c2a6.png

由于d4b495d9a6f04db915dc70232a35cdf8.png42169044349b0242d022c9e25694875d.png的一个极大线性无关组,因此又可得

8c019748f323e14cd909889d4ec375f6.png

7224ab45e0bd23d1c2ef6f22bc3b1a68.png,故18d127a47f56be9a044fdcbf916a3e2c.png为U+W的一组基.

(2)令

  17ec7d6ca4b93be986f323d7ecba4cc6.png

因为秩e418e21f82341ad215048dec827aeb35.png=3.所以齐次方程组①的基础解系由一个向量组成:

8f93e1fb7a2626e16680640939b4be19.png

再令ab9da74e17b54bc243d113004ce5f71b.png,则

2004419d11b09597230456147f0e2e2d.png

故ζ为U∩W的一组基.

3.设A是数域K上的一个m×n,矩阵,B是一个m维非零列向量.令

2fb545cfcd382e925829fb7141b59084.png

(1)证明:W关于Kn的运算构成Kn的一个子空间;

(2)设线性方程组AX=B的增广矩阵的秩为r.证明W的维数dimW=n-r+1:

(3)对于非齐次线性方程组

b57fce2c1d67ace7f1c0ead8ded743a7.png

求W的一个基.[华东师范大学研]

证明:(1)显然W≠1c301ec62099003194c51b6d4b820a39.png,又6e3f8f3b7772c9130de9e98318a0d414.png

因为存在t1,t2使Aα=t1B,Aβ=t2B.所以

7f93fd35cfe7826426e5c96ef099f36d.png

即kα+lβ∈W,此说明W是Kn的子空间.

(2)对线性方程组(A,B)Xn+1=0,由题设,其解空间V的维数为(n+1)-r(A,B)=n-r+1.

任取α∈W,存在t∈K,使

6503460a3f33fed42bef2d9b46d83669.png

所以6273641f9470d626715f5701a03a55c7.png是线性方程组(A,B)Xn+1=0的解.

相关资料推荐:北京大学数学系《高等代数》(第3版)网授精讲班【教材精讲+考研真题串讲】

向然学习资料网:xrxxzlw

为您提供优质资料助你顺利通关!

8074fffe3b4eeefb6a47ef603f6b5a71.png

免费试看/下载:

110b17eb4d8fc9e178a54e340503cd0d.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值