Spark RDD写入RMDB(Mysql)的方法
前面我们介绍了如果将Spark计算后的RDD最终写入Mysql等关系型数据库中,可是这些写操作都是自己实现的,操作起来有点麻烦。不过令人高兴的是,前几天发布的Spark 1.3.0里已经内置了读写关系型数据库的方法,我们可以直接在代码里面调用这个。
Spark 1.3.0中对数据库写操作是通过DataFrame类实现的,这个类也是新增的,是将之前的SchemaRDD重命名之后又定义了一些新方法的类。我们需要通过SQLContext来构造DataFrame对象,在SQLContext类中提供了大量可以构造DataFrame对象的方法,感兴趣的可以去看下。本文是通过SQLContext类中的createDataFrame方法来构造的。函数原型共大家参考,如下所示:
1def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
接收的RDD是Row类型的,它代表的是one row of output from a relational operator。上面的第二个参数就是我们需要写入表的结构,包括了表的字段名与对应的类型,完整的代码如图1所示:
图1
DataFrame类中提供了很多写数据库的操作,在本例中的createJDBCTable就是可以创建表,它的函数原型如下所示:
1def createJDBCTable(url: String, table: String, allowExisting: Boolean): Unit
说明:table是表的名字,最后一个参数是如果表存在是否删除表的意思,false代表不删除。
DataFrame类中还有insertIntoJDBC方法,必须保证表事先存才能调用该函数在,它只用于插入数据,函数原型如下:
1def insertIntoJDBC(url: String, table: String, overwrite: Boolean): Unit
前面两个参数与createJDBCTable一致,如果第三个参数设置为true,则在插入数据之前会调用mysql的TRUNCATE TABLE语句先清掉表中的数据。
本博客文章除特别声明,全部都是原创!
尊重原创,转载请注明: 转载自过往记忆(http://www.iteblog.com/)
本文链接: (http://www.iteblog.com/archives/1290)