作者/ 贺为婷 杨建华 西安工业大学 电子信息工程学院(陕西 西安 710032)本文引用地址:http://www.eepw.com.cn/article/201612/340860.htm
摘要:为了准确直观地观测电路的动态变化过程,采用四种方法对一电路实例进行仿真分析:用积分法求解状态方程,用拉普拉斯变换法求解s域的方程组,用数值积分函数求微分方程的数值解,构建微分方程的Simulink模型观测响应曲线。四种方法的仿真结果完全一致且与电路理论相符。实验结果表明,Matlab程序简洁、可读性强且计算结果准确,同时它形象直观,改变参数方便,能够弥补硬件实验的不足。Matlab在电路理论学科研究与工程实践中都具有很好的应用价值。
引言
高阶动态电路的分析通常都归结为高阶微分方程或一阶微分方程组的求解,需要微分方程和矩阵理论的相关知识,掌握起来比较困难。对于复杂的高阶电路,用求解微分方程的方法则更加困难,一是列写微分方程,二是根据变量及变量的各阶导数的初始值确定积分常数。若借助合适的仿真软件,则可以使电路的分析变得方便、准确和直观。电路仿真是电路分析及电路教学的重要手段,它形象直观,改变参数方便,能够弥补硬件实验的不足[1]。
Matlab是目前最为流行的工程软件之一,它具备强大的计算、仿真和绘图功能,能方便地绘制二维、三维图形和相量图。运用该软件,可以方便地研究各类系统问题,包括电路仿真分析。对于动态过程,用图形来显示会更加直观,它可动态地演示复杂电路各参量的变化过程,从而加深对电路的理解和认识。对于动态过程中某时刻的情况可以有一个定量的认识,对工程上解决系统处在动态阶段的问题有一定的指导意义[2]。
本文以求解图1所示电路的电容电压和电感电流为例,介绍四种基于Matlab的电路动态过程的分析方法。
1 积分法求解状态方程
一个二阶电路如图1所示,开关K原来是打开的,电路已经稳定,uc(0)=1V,il(0)=2A。电源电压及各元件的参数值标示于图中。在t=0时,将开关K闭合,求t≥0时的电容电压uc(t)及电感电流il(t)的变换规律[3]。
积分法求解状态方程:如果一个系统的状态描述方程为:
则该系统的状态响应为: