全是干货的技术号: 本文已收录在github,欢迎 star/fork:https://github.com/Wasabi1234/Java-Interview-Tutorial
Redis 对外提供数据访问服务时,使用的是常驻内存的数据。如果仅将数据存在内存,一旦宕机重启,数据全部丢失。
1 持久化概论
1.1 什么是持久化
redis所有数据保持在内存中,对数据的更新将异步地保存到磁盘上。持久化主要是做灾难恢复、数据恢复,可归类到高可用。
比如你的Redis宕机,你要做的事情是让Redis变得可用,尽快变得可用!
重启Redis,尽快让它对外提供服务,若你没做数据备份,即使Redis启动了,数据都没了!可用什么呢?
很可能说,大量的请求过来,缓存全部无法命中,在Redis里根本找不到数据,这个时候就造成缓存雪崩,就会去MySQL数据库去找,突然MySQL承接高并发,宕机!
MySQL宕机,你都没法去找数据恢复到Redis里面去,Redis的数据从哪儿来?就是从MySQL来的!
若你把Redis的持久化做好,备份和恢复方案也做到,那么即使你的Redis故障,也可通过备份数据,快速恢复,一旦恢复立即对外提供服务
1.2 持久化方式
Redis提供了两种持久化方式:
Redis RDB - 快照
RDB 按指定时间间隔执行数据集的时间点快照,类似于MySQL Dump。
Redis AOF - 命令日志
AOF 会记录服务器接收的每个写操作,这些操作将在服务器启动时再次执行,以重建原始数据集。使用与Redis协议本身相同的格式记录命令,并且仅采用append-only方式。当日志太大时,Redis可以在后台重写日志。类似于MySQL Binlog、Hbase HLog。在Redis重启时,通过回放日志中的写入指令来重构整个数据。
如果希望Redis仅作为纯内存的缓存来用,亦可禁用RDB和AOF。 可以在同一实例中同时使用AOF和RDB。这种情况下,当Redis重新启动时,AOF文件将用于重建原始数据集,因为它可以保证是最完整的。
最重要的是理解RDB与AOF持久性之间的不同权衡。如果同时使用RDB和AOF两种持久化机制,那么在Redis重启时,会使用AOF来重新构建数据,因为AOF中的数据更加完整!
2 RDB - 全量写入
Redis Server在有多db 中存储的K.V可理解为Redis的一个状态。当发生写操作时,Redis就会从一个状态切换到另外一个状态。 基于全量的持久化就是在某个时刻,将Redis的所有数据持久化到硬盘中,形成一个快照。当Redis 重启时,通过加载最近一个快照数据,可以将 Redis 恢复至最近一次持久化状态上。
2.1 触发方式
save 命令
save 可以由客户端显示触发,也可在redis shutdown 时触发。 save本身是单线程串行方式执行,因此当数据量大时,可能会发生Redis Server的长时间卡顿。但其备份期间不会有其他命令执行,因此备份时期 数据的状态始终是一致性的。
若存在老的RDB文件,则新的会替换老的,时间复杂度O(N)。
bgsave
bgsave 也可由
- 客户端显式触发
- 配置定时任务触发
- 主从架构下由从节点触发
bgsave命令在执行时,会fork一个子进程。子进程提交完成后,会立即给客户端返回响应,备份操作在后台异步执行,期间不会影响Redis的正常响应。
对于bgsave来说,当父进程Fork完子进程之后,异步任务会将当前的内存状态作为一个版本进行复制 在复制过程中产生的变更,不会反映在这次备份当中。
不用命令,而使用配置
在Redis的默认配置中,当满足下面任一条件,会自动触发 bgsave 的执行:
配置secondschangessave9001save30010save6010000
bgsave相对于save的优势是异步执行,不影响后续命令执行。但Fork子进程,涉及父进程的内存复制,会增加服务器内存开销。当内存开销高到使用虚拟内存时,bgsave的Fork子进程会阻塞运行,可能会造成秒级不可用。因此使用bgsave需要保证服务器空闲内存足够。
命令savebgsaveIO类型同步异步是否阻塞阻塞非阻塞(在fork时阻塞)复杂度O(N)O(N)优点不会消耗额外内存不阻塞客户端命令缺点阻塞客户端命令需要fork子进程,内存开销大
RDB 最佳配置
关闭自动RDB:
dbfilename dump-${port}.rdbdir /redisDataPathstop-writes-on-bgsave-error yesrdbcompression yesrdbchecksum yes
需要注意的触发时机
- 主从复制时机的全量复制,master节点会执行bgsave
- debug reload
- shutdown
- flushDB 、 flushAll
RDB性质
- RDB是Redis内存到硬盘的快照,用于持久化
- save通常会阻塞Redis
- bgsave不会阻塞Redis,但会fork新进程
- save自动配置满足任一就会被执行
RDB 优点
- RDB会生成多个数据文件,每个文件都代表了某时刻Redis中的所有数据,这种方式非常适合做冷备,可将这种完整数据文件发送到云服务器存储,比如ODPS分布式存储,以预定好的备份策略来定期备份Redis中的数据
- RDB对Redis对外提供的读写服务,影响非常小,可让Redis保持高性能,因为Redis主进程只要fork一个子进程,让子进程执行RDB
- 相对于AOF,直接基于RDB文件重启和恢复Redis进程,更加快速
RDB缺点
- 耗时,O(n)
- fork():耗内存,copy-on-write策略 RDB每次在fork子进程来执行RDB快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒
- 不可控,容易丢失数据 一般RDB每隔5分钟,或者更长时间生成一次,若过程中Redis宕机,就会丢失最近未持久化的数据
2.2 恢复流程
当Redis重新启动时,会从本地磁盘加载之前持久化的文件。当恢复完成之后,再受理后续的请求操作。
3 AOF(append only file)- 增量模式
RDB记录的是每个状态的全量数据,AOF记录的则是每条写命令的记录,通过所有写命令的执行,最后恢复出最终的数据状态。
- 其文件的生成如下:
3.1 写入流程
AOF的三种策略
always
- 每次刷新缓冲区,都会同步触发同步操作。因为每次的写操作都会触发同步,所以该策略会降低Redis的吞吐量,但该 模式会拥有最高的容错能力。
every second
- 每秒异步的触发同步操作,为Redis的默认配置。
no
- 由操作系统决定何时同步,该方式下Redis无法决定何时落地,因此不可控。
对比
命令alwayseverysecno优点不丢失数据每秒1次fsync,丢1秒数据无需设置缺点IO开销大,一般的STAT盘只有几百TPS丢1秒数据不可控
3.2 回放流程
AOF的回放时机也是在机器启动时,一旦存在AOF,Redis就会选择增量回放。
因为增量持久化是持续的写盘,相比于全量持久化,数据更加完整。回放过程就是将AOF中存放的命令,重新执行一遍。完成后再继续接收客户端新命令。
AOF模式的优化重写
随着Redis 持续的运行,会有大量的增量数据append 到AOF 文件中。为了减小硬盘存储和加快恢复速度,Redis 通过rewrite 机制合并历史AOF 记录。如下所示:
原生 AOF
set hello worldset hello javaset hello heheincr counterincr counterrpush mylist arpush mylist brpush mylist c过期数据
AOF 重写
set hello heheset counter 2 rpush mylist a b c
AOF重写的作用
- 减少硬盘占用量
- 加速恢复速度
3.3 AOF重写实现两种方式
bgrewriteaof
AOF 重写配置
配置项
- AOF文件增长率 / AOF文件重写需要的大小
- AOF当前尺寸(单位:字节)
- aof_base_size AOF 上次启动和重写的大小(单位:字节)
自动触发配置
aof_current_size > auto-aof-rewrite-min-sizeaof_current_size - aof_base_size/aof_base_size > auto-aof-rewrite-percentage
3.4 AOF 重写流程
AOF 重写配置
修改配置文件
appendonly yesappendfilename "appendonly-$(port).aof"appendfsync everysecdir /opt/soft/redis/dataauto-aof-rewrite-percentage 100auto-aof-rewrite-min-size 64mbno-appendfsync-on-rewrite yes
AOF的优点
- 更好避免数据丢失 一般AOF每隔1s,通过子进程执行一次fsync,最多丢1s数据
- append-only模式追加写 所以没有任何磁盘寻址的开销,写入性能高,且文件不易破损,即使文件尾部破损,也易修复
- 日志文件即使过大,出现后台重写操作,也不会影响客户端的读写 因为在rewrite log时,会压缩其中的指令,创建出一份需要恢复数据的最小日志。在创建新日志时,旧日志文件还是照常写入。当新的merge后的日志文件准备好时,再交换新旧日志文件即可!
- 命令通过非常可读的方式记录 该特性非常适合做灾难性误删除操作的紧急恢复。 比如某人不小心用flushall命令清空了所有数据,只要这个时候后台rewrite还没有发生,可立即拷贝AOF文件,将最后一条flushall命令给删了,然后再将该AOF文件放回去,就可通过恢复机制,自动恢复所有数据
2.2.2 AOF的缺点
- 对于同一份数据,AOF日志一般比RDB快照更大
- AOF开启后,写QPS会比RDB的低,因为AOF一般会配置成每s fsync一次日志文件,当然,每s一次fsync,性能也还是很高的
- 以前AOF发生过bug,就是通过AOF记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来 类似AOF这种较为复杂的基于命令日志/merge/回放的方式,比基于RDB的每次持久化一份完整的数据快照方式相比更加脆弱一些,易产生bug 不过AOF就是为了避免rewrite过程导致的bug,因此每次rewrite并不是基于旧的指令日志进行merge的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会更好
4 选型及最佳实践
命令RDBAOF启动优先级低高体积低高恢复速度快慢数据安全性丢数据根据策略决定量级重量级轻量级
4.1 RDB最佳策略
- 关闭
- 集中手动管理RDB操作
- 在从节点打开自动执行配置,但是不宜频繁执行RDB
4.2 AOF最佳策略
- 建议打开,但是如果只是纯作为缓存使用可不开
- AOF重写集中管理
- everysec
4.3 抉择RDB & AOF
- 不要仅使用RDB,因为那样会导致你丢失很多数据
- 也不要仅使用AOF,因为那样有两个问题你通过AOF做冷备,没有RDB做冷备,来的恢复速度更快RDB每次简单粗暴生成数据快照,更加健壮,可以避免AOF这种复杂的备份和恢复机制的bug
- 综合使用AOF和RDB用AOF保证数据不丢失,作为数据恢复的第一选择用RDB做不同程度的冷备,在AOF文件都丢失或损坏不可用时,还可使用RDB快速实现数据恢复
4.4 一些最佳实践
- 小分片 例如设置maxmemory参数设置每个redis只存储4个G的空间,这样各种操作都不会太慢
- 监控(硬盘、内存、负载、网络)
- 足够的内存
参考
- https://redis.io/topics/persistence
- 《Redis设计与实现》