Text field typeedit
A field to index full-text values, such as the body of an email or the
description of a product. These fields are analyzed, that is they are passed through an
analyzer to convert the string into a list of individual terms
before being indexed. The analysis process allows Elasticsearch to search for
individual words within each full text field. Text fields are not
used for sorting and seldom used for aggregations (although the
significant text aggregation
is a notable exception).
text fields are best suited for unstructured but human-readable content. If
you need to index unstructured machine-generated content, see
Mapping unstructured content.
If you need to index structured content such as email addresses, hostnames, status
codes, or tags, it is likely that you should rather use a keyword field.
Below is an example of a mapping for a text field:
PUT my-index-000001
{
"mappings": {
"properties": {
"full_name": {
"type": "text"
}
}
}
}
Use a field as both text and keywordedit
Sometimes it is useful to have both a full text (text) and a keyword
(keyword) version of the same field: one for full text search and the
other for aggregations and sorting. This can be achieved with
multi-fields.
Parameters for text fieldsedit
The following parameters are accepted by text fields:
The analyzer which should be used for
the text field, both at index-time and at
search-time (unless overridden by the search_analyzer).
Defaults to the default index analyzer, or the
standard analyzer.
Mapping field-level query time boosting. Accepts a floating point number, defaults
to 1.0.
Should global ordinals be loaded eagerly on refresh? Accepts true or false
(default). Enabling this is a good idea on fields that are frequently used for
(significant) terms aggregations.
Can the field use in-memory fielddata for sorting, aggregations,
or scripting? Accepts true or false (default).
Expert settings which allow to decide which values to load in memory when fielddata
is enabled. By default all values are loaded.
Multi-fields allow the same string value to be indexed in multiple ways for
different purposes, such as one field for search and a multi-field for
sorting and aggregations, or the same string value analyzed by different
analyzers.
Should the field be searchable? Accepts true (default) or false.
What information should be stored in the index, for search and highlighting purposes.
Defaults to positions.
If enabled, term prefixes of between 2 and 5 characters are indexed into a
separate field. This allows prefix searches to run more efficiently, at
the expense of a larger index.
If enabled, two-term word combinations (shingles) are indexed into a separate
field. This allows exact phrase queries (no slop) to run more efficiently, at the expense
of a larger index. Note that this works best when stopwords are not removed,
as phrases containing stopwords will not use the subsidiary field and will fall
back to a standard phrase query. Accepts true or false (default).
Whether field-length should be taken into account when scoring queries.
Accepts true (default) or false.
The number of fake term position which should be inserted between each
element of an array of strings. Defaults to the position_increment_gap
configured on the analyzer which defaults to 100. 100 was chosen because it
prevents phrase queries with reasonably large slops (less than 100) from
matching terms across field values.
Whether the field value should be stored and retrievable separately from
the _source field. Accepts true or false
(default).
The analyzer that should be used at search time on
the text field. Defaults to the analyzer setting.
The analyzer that should be used at search time when a
phrase is encountered. Defaults to the search_analyzer setting.
Which scoring algorithm or similarity should be used. Defaults
to BM25.
Whether term vectors should be stored for the field. Defaults to no.
Metadata about the field.
fielddata mapping parameteredit
text fields are searchable by default, but by default are not available for
aggregations, sorting, or scripting. If you try to sort, aggregate, or access
values from a script on a text field, you will see this exception:
Fielddata is disabled on text fields by default. Set fielddata=true on
your_field_name in order to load fielddata in memory by uninverting the
inverted index. Note that this can however use significant memory.
Field data is the only way to access the analyzed tokens from a full text field
in aggregations, sorting, or scripting. For example, a full text field like New York
would get analyzed as new and york. To aggregate on these tokens requires field data.
Before enabling fielddataedit
It usually doesn’t make sense to enable fielddata on text fields. Field data
is stored in the heap with the field data cache because it
is expensive to calculate. Calculating the field data can cause latency spikes, and
increasing heap usage is a cause of cluster performance issues.
Most users who want to do more with text fields use multi-field mappings
by having both a text field for full text searches, and an
unanalyzed keyword field for aggregations, as follows:
PUT my-index-000001
{
"mappings": {
"properties": {
"my_field": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
}
}
}
}
Use the my_field field for searches.
Use the my_field.keyword field for aggregations, sorting, or in scripts.
Enabling fielddata on text fieldsedit
You can enable fielddata on an existing text field using the
update mapping API as follows:
PUT my-index-000001/_mapping
{
"properties": {
"my_field": {
"type": "text",
"fielddata": true
}
}
}
The mapping that you specify for my_field should consist of the existing
mapping for that field, plus the fielddata parameter.
fielddata_frequency_filter mapping parameteredit
Fielddata filtering can be used to reduce the number of terms loaded into
memory, and thus reduce memory usage. Terms can be filtered by frequency:
The frequency filter allows you to only load terms whose document frequency falls
between a min and max value, which can be expressed an absolute
number (when the number is bigger than 1.0) or as a percentage
(eg 0.01 is 1% and 1.0 is 100%). Frequency is calculated
per segment. Percentages are based on the number of docs which have a
value for the field, as opposed to all docs in the segment.
Small segments can be excluded completely by specifying the minimum
number of docs that the segment should contain with min_segment_size:
PUT my-index-000001
{
"mappings": {
"properties": {
"tag": {
"type": "text",
"fielddata": true,
"fielddata_frequency_filter": {
"min": 0.001,
"max": 0.1,
"min_segment_size": 500
}
}
}
}
}