datatype text html,Text field type

Text field typeedit

A field to index full-text values, such as the body of an email or the

description of a product. These fields are analyzed, that is they are passed through an

analyzer to convert the string into a list of individual terms

before being indexed. The analysis process allows Elasticsearch to search for

individual words within each full text field. Text fields are not

used for sorting and seldom used for aggregations (although the

significant text aggregation

is a notable exception).

text fields are best suited for unstructured but human-readable content. If

you need to index unstructured machine-generated content, see

Mapping unstructured content.

If you need to index structured content such as email addresses, hostnames, status

codes, or tags, it is likely that you should rather use a keyword field.

Below is an example of a mapping for a text field:

PUT my-index-000001

{

"mappings": {

"properties": {

"full_name": {

"type": "text"

}

}

}

}

Use a field as both text and keywordedit

Sometimes it is useful to have both a full text (text) and a keyword

(keyword) version of the same field: one for full text search and the

other for aggregations and sorting. This can be achieved with

multi-fields.

Parameters for text fieldsedit

The following parameters are accepted by text fields:

The analyzer which should be used for

the text field, both at index-time and at

search-time (unless overridden by the search_analyzer).

Defaults to the default index analyzer, or the

standard analyzer.

Mapping field-level query time boosting. Accepts a floating point number, defaults

to 1.0.

Should global ordinals be loaded eagerly on refresh? Accepts true or false

(default). Enabling this is a good idea on fields that are frequently used for

(significant) terms aggregations.

Can the field use in-memory fielddata for sorting, aggregations,

or scripting? Accepts true or false (default).

Expert settings which allow to decide which values to load in memory when fielddata

is enabled. By default all values are loaded.

Multi-fields allow the same string value to be indexed in multiple ways for

different purposes, such as one field for search and a multi-field for

sorting and aggregations, or the same string value analyzed by different

analyzers.

Should the field be searchable? Accepts true (default) or false.

What information should be stored in the index, for search and highlighting purposes.

Defaults to positions.

If enabled, term prefixes of between 2 and 5 characters are indexed into a

separate field. This allows prefix searches to run more efficiently, at

the expense of a larger index.

If enabled, two-term word combinations (shingles) are indexed into a separate

field. This allows exact phrase queries (no slop) to run more efficiently, at the expense

of a larger index. Note that this works best when stopwords are not removed,

as phrases containing stopwords will not use the subsidiary field and will fall

back to a standard phrase query. Accepts true or false (default).

Whether field-length should be taken into account when scoring queries.

Accepts true (default) or false.

The number of fake term position which should be inserted between each

element of an array of strings. Defaults to the position_increment_gap

configured on the analyzer which defaults to 100. 100 was chosen because it

prevents phrase queries with reasonably large slops (less than 100) from

matching terms across field values.

Whether the field value should be stored and retrievable separately from

the _source field. Accepts true or false

(default).

The analyzer that should be used at search time on

the text field. Defaults to the analyzer setting.

The analyzer that should be used at search time when a

phrase is encountered. Defaults to the search_analyzer setting.

Which scoring algorithm or similarity should be used. Defaults

to BM25.

Whether term vectors should be stored for the field. Defaults to no.

Metadata about the field.

fielddata mapping parameteredit

text fields are searchable by default, but by default are not available for

aggregations, sorting, or scripting. If you try to sort, aggregate, or access

values from a script on a text field, you will see this exception:

Fielddata is disabled on text fields by default. Set fielddata=true on

your_field_name in order to load fielddata in memory by uninverting the

inverted index. Note that this can however use significant memory.

Field data is the only way to access the analyzed tokens from a full text field

in aggregations, sorting, or scripting. For example, a full text field like New York

would get analyzed as new and york. To aggregate on these tokens requires field data.

Before enabling fielddataedit

It usually doesn’t make sense to enable fielddata on text fields. Field data

is stored in the heap with the field data cache because it

is expensive to calculate. Calculating the field data can cause latency spikes, and

increasing heap usage is a cause of cluster performance issues.

Most users who want to do more with text fields use multi-field mappings

by having both a text field for full text searches, and an

unanalyzed keyword field for aggregations, as follows:

PUT my-index-000001

{

"mappings": {

"properties": {

"my_field": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword"

}

}

}

}

}

}

Use the my_field field for searches.

Use the my_field.keyword field for aggregations, sorting, or in scripts.

Enabling fielddata on text fieldsedit

You can enable fielddata on an existing text field using the

update mapping API as follows:

PUT my-index-000001/_mapping

{

"properties": {

"my_field": {

"type": "text",

"fielddata": true

}

}

}

The mapping that you specify for my_field should consist of the existing

mapping for that field, plus the fielddata parameter.

fielddata_frequency_filter mapping parameteredit

Fielddata filtering can be used to reduce the number of terms loaded into

memory, and thus reduce memory usage. Terms can be filtered by frequency:

The frequency filter allows you to only load terms whose document frequency falls

between a min and max value, which can be expressed an absolute

number (when the number is bigger than 1.0) or as a percentage

(eg 0.01 is 1% and 1.0 is 100%). Frequency is calculated

per segment. Percentages are based on the number of docs which have a

value for the field, as opposed to all docs in the segment.

Small segments can be excluded completely by specifying the minimum

number of docs that the segment should contain with min_segment_size:

PUT my-index-000001

{

"mappings": {

"properties": {

"tag": {

"type": "text",

"fielddata": true,

"fielddata_frequency_filter": {

"min": 0.001,

"max": 0.1,

"min_segment_size": 500

}

}

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值