题目
给定一个数字,我们按照如下规则把它翻译成字符串:0翻译成“a”,1翻译成“b”,…,11翻译成“1”,25翻译成“z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。例如,12258有5种不同的翻译,分别是“bccfi”、“bwfi”、“bczi”、“mcfi”、“mzi”
解题思路
以12258为例,翻译12258可以分解为两个子问题:翻译1和2558,以及翻译12和258。接下来我们翻译第一个子问题中剩下的2258,同样也可以分解为两个子问题:翻译2和258,以及翻译22和58。注意到子问题翻译258重复出现了。
递归从最大的问题开始自上而下解决问题。我们也可以从最小的子问题开始自下而上解决问题,这样就可以消除重复的子问题。也就是说,我们可以从数字的末尾开始,然后从右往左翻译并计算不同翻译的数目。
C++实现
class Solution
{
public:
int GetTranslationCount(int number)
{
if (number < 0)
return 0;
string numberInString = to_string(number);//将数字转换为字符串
return GetTranslationCount(numberInString);
}
int GetTranslationCount(const string &number)
{
int length = number.length();
int *counts = new int[length]; //为Counts分配空间
int count = 0;
for (int i = length - 1; i >= 0; --i)
{
count = 0;
if (i < length - 1)
count = counts[i + 1];//赋予上一个的count
else
count = 1;//给末尾的数赋值
if (i < length - 1)
{
int digit1 = number[i] - '0'; //字符串转换成数字
int digit2 = number[i+1] - '0';
int converted = digit1 * 10 + digit2;
if (converted >= 10 && converted <= 25)
{
if (i < length - 2)
count += counts[i + 2];
else
count += 1; //倒数第二个数的赋值
}
}
counts[i] = count;
}
count = counts[0];
delete[]counts;
return count;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)