leetcode-背包问题

416-分割等和子集

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
在这里插入图片描述

方法一:动态规划

这道题可以换一种表述:给定一个只包含正整数的非空数组 nums[0],判断是否可以从数组中选出一些数字,使得这些数字的和等于整个数组的元素和的一半。因此这个问题可以转换成「0−1 背包问题」。这道题与传统的「0−1 背包问题」的区别在于,传统的「0−1 背包问题」要求选取的物品的重量之和不能超过背包的总容量,这道题则要求选取的数字的和恰好等于整个数组的元素和的一半。类似于传统的「0−1 背包问题」,可以使用动态规划求解。

在使用动态规划求解之前,首先需要进行以下判断。

根据数组的长度 n 判断数组是否可以被划分。如果n<2,则不可能将数组分割成元素和相等的两个子集,因此直接返回 false。

计算整个数组的元素和 sum 以及最大元素 maxNum。如果 sum 是奇数,则不可能将数组分割成元素和相等的两个子集,因此直接返回false。如果 sum 是偶数,则令 target= sum/2,需要判断是否可以从数组中选出一些数字,使得这些数字的和等于 target。如果 maxNum>target,则除了maxNum 以外的所有元素之和一定小于target,因此不可能将数组分割成元素和相等的两个子集,直接返回 false。

创建二维数组dp,包含 n 行 target+1 列,其中 dp[i][j] 表示从数组的[0,i] 下标范围内选取若干个正整数(可以是 0 个),是否存在一种选取方案使得被选取的正整数的和等于 j。初始时,dp 中的全部元素都是 false。

在定义状态之后,需要考虑边界情况。以下两种情况都属于边界情况。

如果不选取任何正整数,则被选取的正整数等于 0。因此对于所有 0≤i<n,都有 dp[i][0]=true。

当 i==0 时,只有一个正整数nums[0] 可以被选取,因此 dp[0][nums[0]]=true。

对于 i>0 且j>0 的情况,如何确定dp[i][j] 的值?需要分别考虑以下两种情况。

如果j≥nums[i],则对于当前的数字 nums[i],可以选取也可以不选取,两种情况只要有一个为 true,就有 dp[i][j]=true。

如果不选取nums[i],则dp[i][j]=dp[i−1][j];
如果选取nums[i],则 dp[i][j]=dp[i−1][j−nums[i]]。

如果 j<nums[i],则在选取的数字的和等于 j的情况下无法选取当前的数字 nums[i],因此有 dp[i][j]=dp[i−1][j]。

状态转移方程如下:

在这里插入图片描述
最终得到 dp[n−1][target] 即为答案。

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int n = nums.size();
        if (n < 2) {
            return false;
        }
        int sum = accumulate(nums.begin(), nums.end(), 0);
        int maxNum = *max_element(nums.begin(), nums.end());
        if (sum & 1) {
            return false;
        }
        int target = sum / 2;
        if (maxNum > target) {
            return false;
        }
        vector<vector<int>> dp(n, vector<int>(target + 1, 0));
        for (int i = 0; i < n; i++) {
            dp[i][0] = true;
        }
        dp[0][nums[0]] = true;
        for (int i = 1; i < n; i++) {
            int num = nums[i];
            for (int j = 1; j <= target; j++) {
                if (j >= num) {
                    dp[i][j] = dp[i - 1][j] | dp[i - 1][j - num];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[n - 1][target];
    }
};
  1. 时间复杂度:O(n×target)
  2. 空间复杂度:O(n×target)

优化空间后

上述代码的空间复杂度为O(n×target),但是可以发现在计算dp的过程中,每一行的dp值只与上一行的dp值有关,因此只需要一个一维数组即可将空间复杂度降到O(target),此时的转移方程为:
在这里插入图片描述
且需要注意的是第二层的循环我们需要从大到小计算,因为如果我们从小到大更新dp 值,那么在计算dp[j] 值的时候,dp[j−nums[i]] 已经是被更新过的状态,会影响最终的计算结果,不再是上一行的 dp 值。

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int n = nums.size();
        if (n < 2) {
            return false;
        }
        int sum = 0, maxNum = 0;
        for (auto& num : nums) {
            sum += num;
            maxNum = max(maxNum, num);
        }
        if (sum & 1) {
            return false;
        }
        int target = sum / 2;
        if (maxNum > target) {
            return false;
        }
        vector<int> dp(target + 1, 0);
        dp[0] = true;
        for (int i = 0; i < n; i++) {
            int num = nums[i];
            for (int j = target; j >= num; --j) {
                dp[j] |= dp[j - num];
            }
        }
        return dp[target];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值