leetcode-并查集

定义

  1. 并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题。
  2. 并查集通常包含两种操作

查找(Find):查询两个元素是否在同一个集合中
合并(Union):把两个不相交的集合合并为一个集合

注意:双亲结点就是父结点

399-除法求值

给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。

另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。

返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。

注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。
在这里插入图片描述

方法:并查集

class UnionFind {
private:
    vector<int> parent; // 存放父节点
    vector<double> weight; // 指向父节点的权值
    
public:
    UnionFind(int n) {
        for (int i = 0; i < n; ++i) {
            parent.push_back(i);
            weight.push_back(1.0); // 权重初始化为1
        }
    }
    // 路径压缩。返回根节点id
    int find(int x) {
        // 递归寻找根节点,更新该点到根的权重为该点父节点到根的权重
        if (x != parent[x]) {
            int origin = parent[x];
            parent[x] = find(parent[x]);
            weight[x] *= weight[origin];
        }
        return parent[x];
    }
    // 返回除法结果。如果两个值不存在则-1
    double isConected(int x, int y) {
        int rootX = find(x);
        int rootY = find(y);
        // 如果两个值有共同的根也就是可以计算,则算结果。否则不在同一个并查集,-1
        if (rootX == rootY) {
            return weight[x] / weight[y];
        } else {
            return -1.00000;
        }
    }
    void myunion(int x, int y, double value) {
        // 分别找到二者的根节点
        int rootX = find(x), rootY = find(y);
        if (rootX == rootY) {
            return; // 二者已经指向同一个根节点
        }
        // 令分子指向分母的根节点,权重为分母到根的权重*分母除分子的值/分子到根的权重。一开始都是1
        parent[rootX] = rootY;
        weight[rootX] = weight[y] * value / weight[x];
    }
};
class Solution {
public:
    vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
        // 初始化并查集
        int equationsSize = equations.size();
        UnionFind unionFind(2 * equationsSize);
        // 第 1 步:预处理,将变量的值与 id 进行映射
        unordered_map<string, int> hashMap;
        int id = 0;
        for (int i = 0; i < equationsSize; ++i) {
            // 存分子,分母,值为id
            //vector<string> equation = equations;
            string var1 = equations[i][0];
            string var2 = equations[i][1];
            if (!hashMap.count(var1)) {
                hashMap[var1] = id;
                ++id;
            }
            if (!hashMap.count(var2)) {
                hashMap[var2] = id;
                ++id;
            }
            // 把分子分母用有向边连起来
            unionFind.myunion(hashMap[var1], hashMap[var2], values[i]);
        }
        // 第 2 步:做查询
        int queriesSize = queries.size();
        vector<double> res(queriesSize, -1.00000);
        for (int i = 0; i < queriesSize; ++i) {
            string var1 = queries[i][0];
            string var2 = queries[i][1];
            int id1, id2;
            // 如果两个值有至少一个不在equations中,结果为-1,否则做除法
            if (hashMap.count(var1) && hashMap.count(var2)) {
                id1 = hashMap[var1];
                id2 = hashMap[var2];
                res[i] = unionFind.isConected(id1, id2);
            }
        }
        return res;
    }
};
  1. 时间复杂度:O((N+Q)logA),构建并查集 O(NlogA) ,这里 N 为输入方程 equations 的长度,每一次执行合并操作的时间复杂度是 O(logA),这里 A 是 equations 里不同字符的个数;查询并查集O(QlogA),这里 Q 为查询数组 queries 的长度,每一次查询时执行「路径压缩」的时间复杂度是O(logA)。
  2. 空间复杂度:O(A):创建字符与 id 的对应关系 hashMap 长度为 A,并查集底层使用的两个数组 parent 和 weight 存储每个变量的连通分量信息,parent 和 weight 的长度均为 A。

990-等式方程的可满足性

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:“a==b” 或 “a!=b”。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
在这里插入图片描述

方法一:并查集

我们可以将每一个变量看作图中的一个节点,把相等的关系 == 看作是连接两个节点的边,那么由于表示相等关系的等式方程具有传递性,即如果 ab 和 bc 成立,则 a==c 也成立。也就是说,所有相等的变量属于同一个连通分量。因此,我们可以使用并查集来维护这种连通分量的关系。

首先遍历所有的等式,构造并查集。同一个等式中的两个变量属于同一个连通分量,因此将两个变量进行合并。

然后遍历所有的不等式。同一个不等式中的两个变量不能属于同一个连通分量,因此对两个变量分别查找其所在的连通分量,如果两个变量在同一个连通分量中,则产生矛盾,返回 false。

如果遍历完所有的不等式没有发现矛盾,则返回 true。

具体实现方面,使用一个数组 parent 存储每个变量的连通分量信息,其中的每个元素表示当前变量所在的连通分量的父节点信息,如果父节点是自身,说明该变量为所在的连通分量的根节点。一开始所有变量的父节点都是它们自身。对于合并操作,我们将第一个变量的根节点的父节点指向第二个变量的根节点;对于查找操作,我们沿着当前变量的父节点一路向上查找,直到找到根节点。

class UnionFind {
private:
    vector<int> parent;

public:
    UnionFind() {
        parent.resize(26);
        iota(parent.begin(), parent.end(), 0);
    }

    int find(int index) {
        if (index == parent[index]) {
            return index;
        }
        parent[index] = find(parent[index]);
        return parent[index];
    }

    void unite(int index1, int index2) {
        parent[find(index1)] = find(index2);
    }
};

class Solution {
public:
    bool equationsPossible(vector<string>& equations) {
        UnionFind uf;
        for (const string& str: equations) {
            if (str[1] == '=') {
                int index1 = str[0] - 'a';
                int index2 = str[3] - 'a';
                uf.unite(index1, index2);
            }
        }
        for (const string& str: equations) {
            if (str[1] == '!') {
                int index1 = str[0] - 'a';
                int index2 = str[3] - 'a';
                if (uf.find(index1) == uf.find(index2)) {
                    return false;
                }
            }
        }
        return true;
    }
};
  1. 时间复杂度:O(n+ClogC),其中 n 是 equations 中的方程数量,C 是变量的总数,在本题中变量都是小写字母,即 C≤26。上面的并查集代码中使用了路径压缩优化,对于每个方程的合并和查找的均摊时间复杂度都是 O(logC)。由于需要遍历每个方程,因此总时间复杂度是 O(n+ClogC)。
  2. 空间复杂度:O©。创建一个数组 parent 存储每个变量的连通分量信息,由于变量都是小写字母,因此 parent 是长度为 C。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值