一文读懂LSTM和GRU

16 篇文章 3 订阅
5 篇文章 0 订阅

1.简介

LSTM与GRU的存在是为了解决简单RNN面临的长期依赖问题(由于反向传播存在的梯度消失或爆炸问题,简单RNN很难建模长距离的依赖关系),一种比较有效的方案是在RNN基础上引入门控机制来控制信息的传播。

2.LSTM

LSTM通过sigmod函数引入了三个门来控制信息的传递,分别是遗忘门ft,输入门it和输出门ot。三个门的作用为:

(1)遗忘门 ft控制上一时刻的内部状态c(t-1)需要遗忘多少信息;

(2)输入门 it 控制当前时刻的候选状态 c(t)有多少信息需要保存;

(3)输出门ot控制当前时刻的内部状态C(t) 有多少信息需要输出给外部状态 h(t) ;
在这里插入图片描述
公式:
在这里插入图片描述

  1. 第一步是决定我们从“细胞”中丢弃什么信息,这个操作由一个忘记门层来完成。该层读取当前输入x和前神经元信息h,由ft来决定丢弃的信息。输出结果1表示“完全保留”,0 表示“完全舍弃”。
  2. 第二步是确定细胞状态所存放的新信息,这一步由两层组成。sigmoid层作为“输入门层”,决定我们将要更新的值i;tanh层来创建一个新的候选值向量C(t)加入到状态中。
  3. 第三步就是更新旧细胞的状态,将C(t-1)更新为C(t) 。我们把旧状态与f(t)相乘,丢弃掉我们确定需要丢弃的信息。接着加上i(t)*C(t)。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
  4. 最后一步就是确定输出了,这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

为什么LSTM 可以缓解梯度消失的问题

根据此公式
在这里插入图片描述
LSTM的cell state反向传播的公式:
在这里插入图片描述

这只是一步的推导,如果是多个时间步,就是多个类似公式的累乘。从这一步的结果中我们可以发现,其结果的取值范围并不一定局限在[0,1]中,而是有可能大于1的。

那么什么情况下大于1?
  这个由LSTM自身的权值决定,那权值从何而来?当然是学习得到的,这便是LSTM牛逼之处,依靠学习得到权值去控制依赖的长度,这便是LSTM缓解梯度消失的真相。综上可以总结为两个事实:

1、cell state传播函数中的“加法”结构确实起了一定作用,它使得导数有可能大于1;
   2、LSTM中逻辑门的参数可以一定程度控制不同时间步梯度消失的程度。

最后,LSTM依然不能完全解决梯度消失这个问题,有文献表示序列长度一般到了三百多仍然会出现梯度消失现象。如果想彻底规避这个问题,还是transformer好用。

3.GRU

GRU作为LSTM的一种变体,将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态,加诸其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。
在这里插入图片描述
(1)更新门z(t):控制当前状态 h(t)需要从上一时刻状态h(t-1)中保留多少信息(不经过非线性变换),以及需要从候选状态h~(t)中接受多少信息;

(2)重置门r(t) :用来控制候选状态的计算h~(t)是否依赖上一时刻状态 h(t-1)。
GRU直接使用更新门来控制输入和遗忘的平衡

4.总结

对于 LSTM 与 GRU 而言, 由于 GRU 参数更少,收敛速度更快,因此其实际花费时间要少很多,这可以大大加速了我们的迭代过程。 而从表现上讲,二者之间孰优孰劣并没有定论,这要依据具体的任务和数据集而定,而实际上,二者之间的 performance 差距往往并不大,远没有调参所带来的效果明显,与其争论 LSTM 与 GRU 孰优孰劣, 不如在 LSTM 或 GRU的激活函数(如将tanh改为tanh变体)和权重初始化上功夫。

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值