一文概括Spark算子语法

上下文环境

val conf = new SparkConf().setMaster("local").setAppName("wc")
val sc = new SparkContext(conf)
.....
sc.stop()

创建Spark上下文环境,并且进行一些配置

RDD创建

内存创建

val rdd1 = sparkContext.parallelize(List(1,2,3,4))
val rdd2 = sparkContext.makeRDD(List(1,2,3,4))

外部创建

val fileRDD: RDD[String] = sparkContext.textFile("input",4)

创建时的分区数

前提预备知识

在这里插入图片描述
每一个过程的任务数,对应一个inputSplit1, Partition输入可能以多个文件的形式存储在HDFS上,,每个File都包含了很多块,(128M切分),称为Block。
当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。
随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。

  • 每个节点可以起一个或多个Executor。
  • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  • 每个Task执行的结果就是生成了目标RDD的一个partiton。
    注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。Task被执行的并发度 = Executor数目 * 每个Executor核数(=core总个数)

分区数设置

对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。

在Map阶段partition数目保持不变。在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。

RDD在计算的时候,每个分区都会起一个task,所以rdd的分区数目决定了总的task数目
申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task

比如:
RDD有100个分区,那么计算的时候就会生成100个task,设置task间并行的参数是conf spark.sql.shuffle.partitions=100

你的资源配置为10个计算节点,(执行器excutor) --num-executors 10 默认为2一般设置在50-100之间,每个2个核,executor-cores 2 一般 2~4 为宜。同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。Task被执行的并发度 = Executor数目 * 每个Executor核数(=core总个数)

如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。
如果资源不变,你的RDD只有2个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。
这就是在spark调优中,增大RDD分区数目,增大任务并行度的原因。

https://blog.csdn.net/qq_22473611/article/details/107822168

常见转换算子

Value类型

1 map

def map[U: ClassTag](f: T => U): RDD[U]

将处理的数据逐条进行映射转换 类型或者值的转换 一条一条

val rdd1 = rdd.map(_*2)

2 mapPartitions

def mapPartitions[U: ClassTag](
 f: Iterator[T] => Iterator[U],
 preservesPartitioning: Boolean = false): RDD[U]

注意里面是迭代器 传入是一个迭代器 返回也是一个迭代器 将数据以分区为单位发送到计算节点上进行处理

val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
 datas => {
 datas.map(_*2)
 } )

因为类似批处理,性能高,但是会有长时间占用内存、内存泄漏的情况。

3 mapPartitionsWithIndex

def mapPartitionsWithIndex[U: ClassTag](
 f: (Int, Iterator[T]) => Iterator[U],
 preservesPartitioning: Boolean = false): RDD[U]

将数据以分区为单位发送到计算节点上进行处理,但是可以获取当前的分区索引

val dataRDD1 = dataRDD.mapPartitionsWithIndex(
 (index, datas) => {
 datas.map(index, _)
 } )

4 flatMap

def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

将要处理的数据进行扁平化映射处理

//将 List(List(1,2),3,List(4,5))进行扁平化操作
sc.makeRDD(List(List(1,2),5,List(6,7))).flatMap{
      case list:List[_] => list
      case da => List(da)
    }.foreach(println)

5 glom

def glom(): RDD[Array[T]]

将同一个分区的数据直接转换为相同类型的 内存数组进行处理,分区不变

//小功能:计算所有分区最大值求和(分区内取最大值,分区间最大值
sc.makeRDD(List(1, 2, 3, 4), 2).glom().map(
          arr => arr.max
        ).reduce(_ + _)

6.groupBy

def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中一个组的数据在一个分区中,但是并不是说一个分区中只有一个组
根据里面的参数作为k,相同的合为一个迭代器

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.groupBy(
 _%2
)

7.filter

def filter(f: T => Boolean): RDD[T]

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。
当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.filter(_%2 == 0)

8.sample

def sample(
 withReplacement: Boolean,
 fraction: Double,
 seed: Long = Utils.random.nextLong): RDD[T]

抽取数据

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4
),1)
// 抽取数据不放回(伯努利算法)
// 伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
// 具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不要
// 第一个参数:抽取的数据是否放回,false:不放回
// 第二个参数:抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
// 第三个参数:随机数种子
val dataRDD1 = dataRDD.sample(false, 0.5)
// 抽取数据放回(泊松算法)
// 第一个参数:抽取的数据是否放回,true:放回;false:不放回
// 第二个参数:重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
// 第三个参数:随机数种子
val dataRDD2 = dataRDD.sample(true, 2)

常用在数据倾斜中

9.distinct

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

数据去重

//源码
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
  map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
}
//numPartitons  参数

10.coalesce

def coalesce(numPartitions: Int, shuffle: Boolean = false,
 partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
 (implicit ord: Ordering[T] = null)
 : RDD[T]

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
默认不会将数据打乱组合,所以有可能有数据倾斜风险,为了防止倾斜,可以shuffle改为true

val dataRDD=sparkContext.makeRDD(List(1,2,3,4,1,2),6)
val dataRDD1 = dataRDD.coalesce(2)

11.repartiton

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
常用来扩大分区

12.sortBy

def sortBy[K](
 f: (T) => K,
 ascending: Boolean = true,
 numPartitions: Int = this.partitions.length)
 (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

val dataRDD = sparkContext.makeRDD(List(1,2,3,4,1,2),2)
val dataRDD1 = dataRDD.sortBy(num=>num, false, 4)

双Value类型

1 交并查

三者需要数据类型一致

//交集
def intersection(other: RDD[T]): RDD[T]
//并集
def union(other: RDD[T]): RDD[T]
//差集
def subtract(other: RDD[T]): RDD[T]

2 zip

def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]

将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的 Key 为第 1 个 RDD中的元素,Value 为第 2 个 RDD 中的相同位置的元素。
两个rdd数据类型没必要一致,但是数据分区、数据数量必须一致。

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.zip(dataRDD2)

kay-value类型

1 mapValues

对键值对每个value都应用一个函数,但是,key不会发生变化。

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.mapValues(_+1).collect.foreach(println)//对每个value进行+1

2 partitionBy

def partitionBy(partitioner: Partitioner): RDD[(K, V)]

将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是 HashPartitioner

val rdd: RDD[(Int, String)] =
 sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)
import org.apache.spark.HashPartitioner
val rdd2: RDD[(Int, String)] =rdd.partitionBy(new HashPartitioner(2))

如果重新分区的分区器和当前RDD的分区器一样,就不会再分区了。

3 reduceByKey

def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

将数据按照相同的 Key 对 Value 进行聚合

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD1.reduceByKey(_+_, 2)

如果里面的k只有一个 并不会参与计算

4 groupByKey

def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]

将数据源的数据根据 key 对 value 进行分组

val dataRDD1 =sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))

reduceByKey 和 groupByKey 的区别?
从 shuffle 的角度:reduceByKey 和 groupByKey 都存在 shuffle 的操作,但是 reduceByKey可以在 shuffle 前对分区内相同 key 的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而 groupByKey 只是进行分组,不存在数据量减少的问题,reduceByKey 性能比较高。
从功能的角度:reduceByKey 其实包含分组和聚合的功能。GroupByKey 只能分组,不能聚合,所以在分组聚合的场合下,推荐使用 reduceByKey,如果仅仅是分组而不需要聚合。那么还是只能使用 groupByKey

5 aggregateByKey

def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
 combOp: (U, U) => U): RDD[(K, U)]

将数据根据不同的规则进行分区内计算和分区间计算

  1. 第一个参数列表中的参数表示初始值(特别注意 最终输出结果的类型是由初始参数决定的)
  2. 第二个参数列表中含有两个参数
    2.1 第一个参数表示分区内的计算规则
    2.2 第二个参数表示分区间的计算规则
//将数据 List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98))求每个 key 的平均值
val tmp_re: RDD[(String, (Int, Int))] = rdd1.aggregateByKey((0, 0))(
      (t, num) => {
        (t._1 + 1, t._2 + num)
      },
      (t1, t2) => {
        (t1._1 + t2._1, t1._2 + t2._2)
      }
    )
 tmp_re.map(
     arr => (arr._1,arr._2._2/arr._2._1)
    ).foreach(println)

6 foldByKey

def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为 foldByKey

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)

这时候跟 reduceByKey的区别是 foldByKeys是有初始值

7 combineByKey

def combineByKey[C](
 createCombiner: V => C,
 mergeValue: (C, V) => C,
 mergeCombiners: (C, C) => C): RDD[(K, C)]

第一个参数 表示 将相同k的第一个数进行转换
第二个 分区内计算规则
第三个 分区间计算规则

//将数据 List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98))求每个 key 的平均值
val list: List[(String, Int)] = List(("a", 88), ("b", 95), ("a", 91), ("b", 93), 
("a", 95), ("b", 98))
val input: RDD[(String, Int)] = sc.makeRDD(list, 2)
val combineRdd: RDD[(String, (Int, Int))] = input.combineByKey(
 (_, 1),
 (acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
 (acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
)

思考一个问题:reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?
reduceByKey: 相同 key 的第一个数据不进行任何计算,分区内和分区间计算规则相同
FoldByKey: 相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
AggregateByKey:相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同
CombineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。

//四个版本的word Count
rdd.reduceByKey(_ + _).foreach(println)
printf("__________________\n")
rdd.foldByKey(0)(_ + _).foreach(println)
printf("__________________\n")
rdd.aggregateByKey(0)(_ + _, _ + _).foreach(println)
printf("__________________\n")
rdd.combineByKey(
      n => n,
      (a: Int, b: Int) => {
        a + b
      },
      (c: (Int), d: (Int)) => {
        c + d
      }).foreach(println)

8 sortByKey

def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
 : RDD[(K, V)]

在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)

9 join

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD
RDD上的k不存在相等,则不会出现在最终的结果上。

相同的key,如果 rdd1有多个相同的k 会依次每个都匹配 最终会有类似笛卡尔乘积 增加数据量 性能降低

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)

10 leftOuterJoin

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

左边为主 主表里面的k如果次表没有 则会添加空

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val rdd: RDD[(String, (Int, Option[Int]))] = dataRDD1.leftOuterJoin(dataRDD2)

11 cogroup

def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("c",2),("c",3)))
val value: RDD[(String, (Iterable[Int], Iterable[Int]))] = 
dataRDD1.cogroup(dataRDD2)
//结果
(a,(CompactBuffer(1, 2),CompactBuffer(1)))
(c,(CompactBuffer(3),CompactBuffer(2, 3)))

常见行动算子

1 reduce

def reduce(f: (T, T) => T): T

聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 聚合数据
val reduceResult: Int = rdd.reduce(_+_)
//利用reduce求解wc
sc.textFile("./data").flatMap(_.split(" ")).map(
      x =>
        mutable.Map[String,Int]((x,1))
    ).reduce(
      (map1,map2) =>{
        map2.keys.foreach(
          k => {
            val num = map1.getOrElse(k, 0) + map2.get(k).get
            map1.put(k, num)
          }
        )
        map1
      }
    ).foreach(println)

2 collect

def collect(): Array[T]

在驱动程序中,以数组 Array 的形式返回数据集的所有元素

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集数据到 Driver
rdd.collect().foreach(println)

3 count

def count(): Long

返回 RDD 中元素的个数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()

4 first

def first(): T

返回 RDD 中的第一个元素

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val firstResult: Int = rdd.first()
println(firstResult)

5 take

def take(num: Int): Array[T]

返回一个由 RDD 的前 n 个元素组成的数组

vval rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))

6 takeOrdered

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]

返回该 RDD 排序后的前 n 个元素组成的数组,升序

val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
// 返回 RDD 中元素的个数
val result: Array[Int] = rdd.takeOrdered(2)

7 aggregate

def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U

分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
注意:初始值不仅仅会参与分区内计算 同样也会参与分区间计算这个与aggregateByKey是不一样的

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 2)
// 将该 RDD 所有元素相加得到结果
//val result: Int = rdd.aggregate(0)(_ + _, _ + _)
val result: Int = rdd.aggregate(10)(_ + _, _ + _)

//结果
//10+ (10+1+2) +(10+3+4) = 40

8 fold

def fold(zeroValue: T)(op: (T, T) => T): T

折叠操作,aggregate 的简化版操作

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)

9 countByKey

def countByKey(): Map[K, Long]

统计每种 key 的个数

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2, 
"b"), (3, "c"), (3, "c")))
// 统计每种 key 的个数
val result: collection.Map[Int, Long] =rdd.countByKey()
//结果
(1,3)
(3,2)
(2,1)

10 save算子

def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
 path: String,
 codec: Option[Class[_ <: CompressionCodec]] = None): Unit

将数据存储为不同的数据格式

// 保存成 Text 文件
rdd.saveAsTextFile("output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")
// 保存成 Sequencefile 文件
rdd.map((_,1)).saveAsSequenceFile("output2")

11 foreach

def foreach(f: T => Unit): Unit = withScope {
 val cleanF = sc.clean(f)
 sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))

分布式遍历 RDD 中的每一个元素,调用指定函数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集后打印
rdd.map(num=>num).collect().foreach(println)
println("****************")
// 分布式打印
rdd.foreach(println)

性能优化

RDD流程优化

  • 1 对于同一份数据,只应该创建一个RDD,不能创建多个RDD来代表同一份数据。
    同一份数据,创建了多个RDD。这就意味着,我们的Spark作业会进行多次重复计算来创建多个代表相同数据的RDD,进而增加了作业的性能开销。
  • 2 对于类似这种多个RDD的数据有重叠或者包含的情况,我们应该尽量复用一个RDD,这样可以尽可能地减少RDD的数量,从而尽可能减少算子执行的次数。
  • 3 对多次使用的RDD进行持久化。此时Spark就会根据你的持久化策略,将RDD中的数据保存到内存或者磁盘中。以后每次对这个RDD进行算子操作时,都会直接从内存或磁盘中提取持久化的RDD数据,然后执行算子,而不会从源头处重新计算一遍这个RDD,再执行算子操作。
  • 4 要尽量避免使用shuffle类算子。
    shuffle过程中,各个节点上的相同key都会先写入本地磁盘文件中,然后其他节点需要通过网络传输拉取各个节点上的磁盘文件中的相同key。而且相同key都拉取到同一个节点进行聚合操作时,还有可能会因为一个节点上处理的key过多,导致内存不够存放,进而溢写到磁盘文件中。因此在shuffle过程中,可能会发生大量的磁盘文件读写的IO操作,以及数据的网络传输操作。磁盘IO和网络数据传输也是shuffle性能较差的主要原因。
  • 5 一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map-side预聚合的算子。
    所谓的map-side预聚合,说的是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。通常来说,在可能的情况下,建议使用reduceByKey或者aggregateByKey算子来替代掉groupByKey算子。因为reduceByKey和aggregateByKey算子都会使用用户自定义的函数对每个节点本地的相同key进行预聚合。而groupByKey算子是不会进行预聚合的,全量的数据会在集群的各个节点之间分发和传输,性能相对来说比较差。

参数优化

  • num-executors
    参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
    参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。
  • executor-memory
    参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
    参数调优建议:每个Executor进程的内存设置4G-8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。
  • executor-cores
    参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
    参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。
  • driver-memory
    参数说明:该参数用于设置Driver进程的内存。
    参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。
  • spark.default.parallelism
    参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
    参数调优建议:Spark作业的默认task数量为500-1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
  • spark.storage.memoryFraction
    参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
    参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
  • spark.shuffle.memoryFraction
    参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
    参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值