对数函式的平方怎样求 linux awk 内建以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!
对数函式的平方怎样求 linux awk 内建
结果是不对的,对数的真数和底数同时平方(或者任意次方),对数值都是不变的,也就是说: log3(6)=log9(36)=log27(216)=... 对数的平方与真数和底数都没有直接的关系
对数函式的平方怎么化简?
对数函式的次方式就是最简式,不能化简了
怎样求对数函式的值域
首先要求定义域,
根据真数部分大于零求得定义域,
然后根据对数函式图象来求值域。
求对数函式的反函式
原式等于
2的y次方等于x-x^2
将x-x^2配成完全平方形式
把完全平方式放等号一边
把剩余的放等号另一边
两边以开放就行了
值域就是原函式的定义域
对数函式的求解
下面的对数符号省略了底【3】:
作如下整理:
log(3^(x+2))+log(x)=log(3+5x)
log[x(3^(x+2))]=log(3+5x)
x×(3^(x+2))=3+5x
整理得
3^x=1/(3x)+(5/9),其中 x>-3/5
这时,
在同一个直角座标系中作y=3^x、y=1/(3x)+(5/9)的影象,
交点就是函式的解。
求此对数函式的解
这样子的吧:
2log2(x)-3logx(2)+5=0
令t=log2(x)=1/logx(2), x>0
则2t-3/t+5=0
2t²+5t-3=0
(2t-1)(t+3)=0
t=1/2或-3
x=√2或1/8
对数函式的反函式
解答:
y=ln(x+根号x^2+1)
e(y次方)=x+根号(x²+1)
e(y次方)-x=根号(x²+1)
两边平方,有:
e(2y次方)-2xe(y次方)+x²=x²+1
e(2y次方)-2xe(y次方)=1
2xe(y次方)=e(2y次方)-1
x=[e(2y次方)-1]/2e(y次方)
∴y=ln(x+根号x^2+1)的反函式是:
y==[e(2x次方)-1]/2e(x次方)
对数函式的题
∵f(x)=log(1/a)(2-x)在定义域上递增
∴0< 1/a <1 a>1
令1-x^2=t 。
∵a>1
∴当t减小,g(x)减小
∴单调减区间为[0,+∞)
(1) -1
(2) 0<4x-5<=2 即5/4
对数函式的导函式怎么求导
对数函式y=logax的导函式是y'=1/(lna*x)
它的导数是y''=-1/(lna*x^2)
分页:123