机器学习-(手推)线性回归3-正则化-岭回归(Ridge)-频率角度&贝叶斯角度

一、正则化-岭回归-频率角度

回顾:

Loss Function:

过拟合的解决方法:

①最直接:加数据

②降维(特征选择/特征提取(PCA))

③正则化(对参数空间,例如w的约束)

正则化的框架:

L(w) + \lambda P(w)

L(w):Loss Function  λ:惩罚系数  P(w):penalty(惩罚项))

即优化的目标为:argmin[L(w) + \lambda P(w)]

若为L_{1}正则化:Lasso回归     P(w) = ||w||_{1}

若为L_{2}正则化:岭回归           P(w) = ||w||_{2}w^{T}w

(备注L_{2}正则化又叫权重衰减)

优化目标函数:

接下来就对J(w)求极值计算w的最优值:

目标:w\hat{} = argminJ(w)

过程:

\frac{\partial J(w)}{\partial x} = 2(X^{T}X + \lambda E)\omega - 2X^{T}Y=0

(X^{T}X + \lambda E)\omega =X^{T}Y

\omega \hat{} = (X^{T}X + \lambda E)^{-1}X^{T}Y(岭回归下得到的解析解)

二、正则化-岭回归-贝叶斯角度 

回顾:

 目标:argmaxP(y|w)*P(w)

 结论:

①无正则化:最小二乘法(LSE) 等价于   最大似然估计(MLE)-(noise服从高斯分布)

L_{2}正则化:Regularized LSE  等价于  最大后验估计(MAP)-(noise服从高斯分布)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值