java multipy_python multi-thread & multi-process

python odd & ends

multi-thread vs multi-process in py

后记

python odd & ends

python是一个解释型的语言, 类比java是一个语言标准真正的实现有Hotspot,JRockit, py解释器实现最常见是CPython,其他常vendor还有IronPython (Python running on .NET), Jython (Python running on the Java Virtual Machine),PyPy (A fast python implementation with a JIT compiler),Stackless Python (Branch of CPython supporting microthreads)

后面分析的内容都基于cpython

ac30265e42d9?from=timeline&isappinstalled=0

ac30265e42d9?from=timeline&isappinstalled=0

multi-thread vs multi-process

Here are some pros/cons I came up with.

Multiprocessing

Pros:

Separate memory space

Code is usually straightforward

Takes advantage of multiple CPUs & cores

Avoids GIL limitations for cPython

Eliminates most needs for synchronization primitives unless if you use shared memory (instead, it's more of a communication model for IPC)

Child processes are interruptible/killable

Python 'multiprocessing' module includes useful abstractions with an interface much like 'threading.Thread'

A must with cPython for CPU-bound processing

Cons:

IPC a little more complicated with more overhead (communication model vs. shared memory/objects)

Larger memory footprint

Threading

Pros:

Lightweight - low memory footprint

Shared memory - makes access to state from another context easier

Allows you to easily make responsive UIs

cPython C extension modules that properly release the GIL will run in parallel

Great option for I/O-bound applications

Cons:

cPython - subject to the GIL

Not interruptible/killable

If not following a command queue/message pump model (using the Queue module), then manual use of synchronization primitives become a necessity (decisions are needed for the granularity of locking)

Code is usually harder to understand and to get right - the potential for race conditions increases dramatically

以上列举了multi-process和multi-threads的优劣之处, 有2个问题需要验证一下.

1.在multi-threads环境下, GIL的影响是什么?

2.对于multi-process,multi-threads针对不同场景应该如何选型?

通过实验我们可以一窥究竟:

在multi-threads环境下, GIL的影响是什么?

如下类似代码在java或者cpp环境下, 因为并发和cache不一致会造成最后结果

from threading import Thread

counter = 0

num_threads = 16

def increase_atomic_test():

global counter

for i in range(10000):

counter += 1

threads = []

for th in range(num_threads):

threads.append(Thread(target=increase_atomic_test, args=(), name='increase_atomic_test_' + str(th)))

for th in range(num_threads):

threads[th].start()

for th in range(num_threads):

threads[th].join()

print('counter = %s' % counter)

运行结果如下:

/usr/local/Cellar/python3/3.6.3/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/db24/work_src/bianlifeng/test/test_atomic.py

counter = 160000

16个线程,每个更新1万次,最后结果是对的, 这里的初步结论: 实际真正执行py代码的thread只有一个

GIL是cpython实现的一个内部细节, python定义了锁变量, 对JPython可能就不是一个问题,所以对共享变量的访问修改还是应该加上类似RLock的机制

def RLock(*args, **kwargs):

Factory function that returns a new reentrant lock.

A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it

这样cpython升级后GIL不是一个问题,或者换到其他py的实现版本上就不会有问题了

对于multi-process,multi-threads针对不同场景应该如何选型?

我们来看一个更加复杂的case

一个cpu密集操作的task单元,task_unit.cc

int work_run_(){

int s = 0;

for(int i = 0; i < 10000; ++i){

for(int j = 0; j < 10000; ++j){

for(int z = 0; z < 2; ++z)

s += 1;

}

}

return s;

}

extern "C" {

int work_run(){ return work_run_();}

}

一个cpu密集操作的task单元test_unit.py, 逻辑计算量等于task_unit.cc

import queue

import time

from ctypes import cdll

# def work_unit_cpp(v1, v2, _flann, _surf):

# _, des1 = _surf.detectAndCompute(v1, None)

# _, des2 = _surf.detectAndCompute(v2, None)

# matches = _flann.knnMatch(des1, des2, k=2)

# return sum(1 for x in matches if x[0].distance < 0.5 * x[1].distance) > 3

# time.sleep(0.1)

def work_unit_cpp():

lib = cdll.LoadLibrary('libtask_unit.so')

lib.work_run()

def work_unit_py():

x = 0

for i in range(10000):

for j in range(10000):

for z in range(2):

x += 1

return x

def work_unit_q(q, task_type):

# surf = cv2.xfeatures2d.SIFT_create(600)

# FLANN_INDEX_KDTREE = 0

# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

# search_params = dict(checks=50)

# flann = cv2.FlannBasedMatcher(index_params, search_params)

while not q.empty():

try:

v2 = q.get(block=False, timeout=None)

q.task_done()

if task_type == 'cpp':

work_unit_cpp()

else:

work_unit_py()

except queue.Empty:

return

return

组织调用代码如下:

# import cv2

import sys

import argparse

from datetime import datetime

from datetime import timedelta

import queue

from threading import Thread

import multiprocessing as mp

from multiprocessing import JoinableQueue

from test_unit import work_unit_cpp, work_unit_py, work_unit_q

from multiprocessing import Queue as MPQueue

import time

NUMBER_OF_TARGET = 32

NUMBER_OF_THREADS = 8

NUMBER_OF_PROCESS = 8

def parse_arg(args):

parser = argparse.ArgumentParser()

parser.add_argument('--run_type', type=str, choices=['single', 'mt', 'mp'], help='single for within thread, '

'mt for multiple thread, '

'mp for multi-process',

default='single')

parser.add_argument('--task_type', type=str, choices=['cpp', 'py'], help='cpp for task run in cpp '

'py for task run in python',

default='cpp')

return parser.parse_args(args)

def test_one_thread(task_type):

print('test_one_thread %s' % task_type)

for i in range(NUMBER_OF_TARGET):

if task_type == 'cpp':

work_unit_cpp()

else:

work_unit_py()

def test_multi_thread(task_type):

print('test_multi_thread %s' % task_type)

q = queue.Queue(NUMBER_OF_TARGET)

for i in range(NUMBER_OF_TARGET):

q.put(i)

ths = []

for i in range(NUMBER_OF_THREADS):

ths.append(Thread(target=work_unit_q, args=(q, task_type,), name=str(i)))

for i in range(NUMBER_OF_THREADS):

ths[i].start()

for i in range(NUMBER_OF_THREADS):

ths[i].join()

def test_multi_process(task_type):

print('test_multi_process %s' % task_type)

q = JoinableQueue(NUMBER_OF_TARGET)

for i in range(NUMBER_OF_TARGET):

q.put(i)

processes = []

for i in range(NUMBER_OF_PROCESS):

processes.append(mp.Process(target=work_unit_q, args=(q, task_type,)))

for process in processes:

process.start()

for process in processes:

process.join()

q.close()

if __name__ == '__main__':

start = datetime.now()

arg = parse_arg(sys.argv[1:])

if arg.run_type == 'single':

test_one_thread(arg.task_type)

elif arg.run_type == 'mt':

test_multi_thread(arg.task_type)

else:

test_multi_process(arg.task_type)

print('time:%s' % timedelta.total_seconds(datetime.now() - start))

这里有2个参数,run_type:标识单线程,多线程,多进程;task_type:标识执行任务是c/cpp,python的

最开始cpp执行的任务是用opencv surf抽特征点计算相似度,但是opencv在多进程环境下有问题, 这里任务是一个CPU密集操作并且cpp和py是逻辑等效的

以下是测试结果:

time python3 test_multi_process_thread.py --run_type=mp --task_type=cpp

test_multi_process cpp

time:3.51

real 0m3.822s

user 0m14.324s

sys 0m2.932s6788

time python3 test_multi_process_thread.py --run_type=mt --task_type=cpp

test_multi_thread cpp

time:2.135229

real 0m2.455s

user 0m16.528s

sys 0m1.624s

time python3 test_multi_process_thread.py --run_type=single --task_type=cpp

test_one_thread cpp

time:14.562856

real 0m14.810s

user 0m15.136s

sys 0m2.704s

time python3 test_multi_process_thread.py --run_type=mp --task_type=py

test_multi_process py

time:170.000028

real 2m50.302s

user 21m46.504s

sys 0m2.176s

time python3 test_multi_process_thread.py --run_type=single --task_type=py

test_one_thread py

time:1146.867732

real 19m7.136s

user 19m7.336s

sys 0m2.856s

time python3 test_multi_process_thread.py --run_type=mt --task_type=py

test_multi_thread py

time:1810.804411

real 30m11.120s

user 30m31.556s

sys 0m28.404s

可以看出:

同样的计算任务,同样的运行模式, cpp优于py的

对于计算任务是cpp的,多线程略优于多进程,大幅优于串行, 这个可以解释为线程开销和交互小于进程,都可以做到cpu级别的任务并行

对于计算任务是py的, 多进程因为规避了GIL 所以效率最优,串行居中,多线程因为互相争抢GIL造成时间最慢,这时候用多线程反而慢

后记

写程序不应依赖解释器的实现细节, 对于多呈现环境下变量的访问要么用queue的机制或者加入类似RLock,即使解释器升级或者调用c/cpp时暂时放弃GIL也不会造成状态不一致

python的特点是容易写,调用别的库方便,因为python的变量都是动态的都要从堆里面创建和读取, 不能善用寄存器, 所以对于CPU密集型的计算任务应该放进c或者cpp中,应用多线程模型,最大化吞吐

虽然调用c/cpp会释放GIL, 但是在c/cpp内部的锁机制依然会影响程序的吞吐, 还是需要了解依赖模块的阻塞调用关系

对于计算任务本身就是用py执行的,那么慎用多线程模型,可以考虑用多进程模型提高吞吐

依据python的特点,适合做程序的连接者而不是执行者, building block用高效的语言实现, 用py快速组织, 兼顾迭代速度和吞吐

比如在tensorflow中, graph的定义变化比较快,而对于定义好图的执行是通用的,可以用py定义,真正落地执行放到cpp上,弱化GIL的争抢, 各兼其长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值