的版本号。 将右表的join keys放到HashSet里。然后遍历左表,查找左表的join key能否匹配。case class LeftSemiJoinHash(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
left: SparkPlan,
right: SparkPlan) extends BinaryNode with HashJoin {
val buildSide = BuildRight //buildSide是以右表为基准
override def requiredChildDistribution =
ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil
override def output = left.output
def execute() = {
buildPlan.execute().zipPartitions(streamedPlan.execute()) { (buildIter, streamIter) => //右表的物理计划运行后生成RDD,利用zipPartitions对Partition进行合并。然后用上述方法实现。
val hashSet = new java.util.HashSet[Row]()
var currentRow: Row = null
// Create a Hash set of buildKeys
while (buildIter.hasNext) {
currentRow = buildIter.next()
val rowKey = buildSideKeyGenerator(currentRow)
if(!rowKey.anyNull) {
val keyExists = hashSet.contains(rowKey)
if (!keyExists) {
hashSet.add(rowKey)
}
}
}
val joinKeys = streamSideKeyGenerator()
streamIter.filter(current => {
!joinKeys(current).anyNull && hashSet.contains(joinKeys.currentValue)
})
}
}
}
2.2、BroadcastHashJoin 名约: 广播HashJoin,呵呵。 是InnerHashJoin的实现。这里用到了concurrent并发里的future,异步的广播buildPlan的表运行后的的RDD。
假设接收到了广播后的表,那么就用streamedPlan来匹配这个广播的表。
实现是RDD的mapPartitions和HashJoin里的joinIterators最后生成join的结果。case class BroadcastHashJoin(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
buildSide: BuildSide,
left: SparkPlan,
right: SparkPlan)(@transient sqlContext: SQLContext) extends BinaryNode with HashJoin {
override def otherCopyArgs = sqlContext :: Nil
override def outputPartitioning: Partitioning = left.outputPartitioning
override def requiredChildDistribution =
UnspecifiedDistribution :: UnspecifiedDistribution :: Nil
@transient
lazy val broadcastFuture = future { //利用SparkContext广播表
sqlContext.sparkContext.broadcast(buildPlan.executeCollect())
}
def execute() = {
val broadcastRelation = Await.result(broadcastFuture, 5.minute)
streamedPlan.execute().mapPartitions { streamedIter =>
joinIterators(broadcastRelation.value.iterator, streamedIter) //调用joinIterators对每一个分区map
}
}
}
2.3、ShuffleHashJoinShuffleHashJoin顾名思义就是须要shuffle数据,outputPartitioning是左孩子的的Partitioning。
会依据这个Partitioning进行shuffle。
然后利用SparkContext里的zipPartitions方法对每一个分区进行zip。
这里的requiredChildDistribution。的是ClusteredDistribution,这个会在HashPartitioning里面进行匹配。
关于这里面的分区这里不赘述,能够去org.apache.spark.sql.catalyst.plans.physical下的partitioning里面去查看。case class ShuffledHashJoin(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
buildSide: BuildSide,
left: SparkPlan,
right: SparkPlan) extends BinaryNode with HashJoin {
override def outputPartitioning: Partitioning = left.outputPartitioning
override def requiredChildDistribution =
ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil
def execute() = {
buildPlan.execute().zipPartitions(streamedPlan.execute()) {
(buildIter, streamIter) => joinIterators(buildIter, streamIter)
}
}
}
未完待续 :)
原创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog。作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/38274621
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议。欢迎转载、转发和评论。可是请保留本文作者署名和文章链接。如若须要用于商业目的或者与授权方面的协商,请联系我。
Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现
标签:ide set select sof sample 封装 element rod 并发
本条技术文章来源于互联网,如果无意侵犯您的权益请点击此处反馈版权投诉
本文系统来源:http://www.cnblogs.com/cxchanpin/p/6869232.html